Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
The 3rd BRICS Mathematics Conference
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1015-1016The 3rd BRICS Mathematics Conference
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016 -
Регуляризация, робастность и разреженность вероятностных тематических моделей
Компьютерные исследования и моделирование, 2012, т. 4, № 4, с. 693-706Предлагается обобщенное семейство вероятностных тематических моделей коллекций текстовых документов, в котором эвристики регуляризации, сэмплирования, частого обновления параметров, робастности относительно шума и фона могут включаться независимо друг от друга в любых сочетаниях, порождая как известные модели PLSA, LDA, CVB0, SWB, так и новые. Показано, что робастная тематическая модель на основе PLSA, разделяющая термины на тематические, шумовые и фоновые, не нуждается в регуляризации и обеспечивает разреженность искомых дискретных распределений тем в документах и терминов в темах.
Ключевые слова: компьютерныйана лиз текстов, тематическое моделирование, вероятностныйла тентный семантическийана лиз, EM-алгоритм, латентное размещение Дирихле, сэмплирование Гиббса, байесовская регуляризация, перплексия, робастность.
Regularization, robustness and sparsity of probabilistic topic models
Computer Research and Modeling, 2012, v. 4, no. 4, pp. 693-706Просмотров за год: 25. Цитирований: 12 (РИНЦ).We propose a generalized probabilistic topic model of text corpora which can incorporate heuristics of Bayesian regularization, sampling, frequent parameters update, and robustness in any combinations. Wellknown models PLSA, LDA, CVB0, SWB, and many others can be considered as special cases of the proposed broad family of models. We propose the robust PLSA model and show that it is more sparse and performs better that regularized models like LDA.
-
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
Ключевые слова: миграция, миграционные процессы, модели миграции, методы, регрессионные модели, клеточные автоматы, агент-ориентированные модели, балансовые модели, динамические модели.
Migration processes modelling: methods and tools (overview)
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.
Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.
The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.
-
Моделирование динамики общественного внимания к протяженным процессам на примере пандемии COVID-19
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1131-1141Изучается динамика общественного внимания к эпидемии COVID-19 в ряде стран. При этом в качестве индикатора общественного внимания взято количество поисковых запросов в Google, сделанных в течение суток пользователями изданной страны. В эмпирической части работы рассмотрены данные относительно количества запросов и количества новых заболевших для ряда стран. Показано, что во всех рассмотренных странах максимум общественного внимания наступил ранее максимума количества новых зараженных за день. Тем самым обнаружено, что в течение некоторого периода времени рост эпидемии происходит параллельно со спадом общественного внимания к ней. Также показано, что спад количества запросов описывается экспоненциальной функцией времени. Для того чтобы описать выявленную эмпирическую зависимость, предложена математическая модель, представляющая собой модификацию модели спада внимания после одноразового политического события. Модель развивает подход, рассматривающий принятие решения индивидом как членом социума, в котором происходит информационный процесс. В рамках этого подхода предполагается, что решение индивида о том, делать ли в данный день поисковый запрос на тему COVID, формируется на основании двух факторов. Один изн их — это установка, отражающая долгосрочную заинтересованность индивида в данной теме и аккумулирующая предыдущий опыт индивида, его культурные предпочтения, социальное и экономическое положение. Второй — динамический фактор общественного внимания к данному процессу — изменяется в течение рассматриваемого процесса под влиянием информационных стимулов. Применительно к рассматриваемой тематике информационные стимулы связны с эпидемической динамикой. Пове- денческая гипотеза состоит в том, что если в некоторый день сумма установки и динамического фактора превышает некоторую пороговую величину, то в этот день индивид делает поисковый запрос на тему COVID. Общая логика состоит в том, что чем выше скорость роста числа заболевших, тем выше информационный стимул, тем медленнее убывает общественное внимание к пандемии. Таким образом, построенная модель позволила соотнести скорость экспоненциального убывания количества запросов со скоростью роста количества заболевших. Обнаруженная с помощью модели закономерность проверена на эмпирических данных. Получено, что статистика Стьюдента равна 4,56, что позволяет отклонить гипотезу об отсутствии корреляционной связи с уровнем значимости 0,01.
Ключевые слова: общественное внимание, COVID-19, инфодемия, математическая модель, количество поисковых запросов.
Modeling the dynamics of public attention to extended processes on the example of the COVID-19 pandemic
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1131-1141The dynamics of public attention to COVID-19 epidemic is studied. The level of public attention is described by the daily number of search requests in Google made by users from a given country. In the empirical part of the work, data on the number of requests and the number of infected cases for a number of countries are considered. It is shown that in all cases the maximum of public attention occurs earlier than the maximum daily number of newly infected individuals. Thus, for a certain period of time, the growth of the epidemics occurs in parallel with the decline in public attention to it. It is also shown that the decline in the number of requests is described by an exponential function of time. In order to describe the revealed empirical pattern, a mathematical model is proposed, which is a modification of the model of the decline in attention after a one-time political event. The model develops the approach that considers decision-making by an individual as a member of the society in which the information process takes place. This approach assumes that an individual’s decision about whether or not to make a request on a given day about COVID is based on two factors. One of them is an attitude that reflects the individual’s long-term interest in a given topic and accumulates the individual’s previous experience, cultural preferences, social and economic status. The second is the dynamic factor of public attention to the epidemic, which changes during the process under consideration under the influence of informational stimuli. With regard to the subject under consideration, information stimuli are related to epidemic dynamics. The behavioral hypothesis is that if on some day the sum of the attitude and the dynamic factor exceeds a certain threshold value, then on that day the individual in question makes a search request on the topic of COVID. The general logic is that the higher the rate of infection growth, the higher the information stimulus, the slower decreases public attention to the pandemic. Thus, the constructed model made it possible to correlate the rate of exponential decrease in the number of requests with the rate of growth in the number of cases. The regularity found with the help of the model was tested on empirical data. It was found that the Student’s statistic is 4.56, which allows us to reject the hypothesis of the absence of a correlation with a significance level of 0.01.
-
Численная модель механического отклика самоподъемной плавучей буровой установки на сейсмические воздействия
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 853-871В работе представлены результаты численного моделирования напряженно-деформированного состояния самоподъемных плавучих буровых установок, использующихся для освоения шельфовых месторождений углеводородов. Изучены равновесное напряженное состояние установки, погруженной в донный грунт, и его изменение, вызванное внешним механическим воздействием. Рассмотрена частная задача, в рамках которой в роли внешнего воздействия выступает поверхностная сейсмическая волна от удаленного землетрясения. Исследован отклик системы «самоподъемная плавучая буровая установка – донный грунт» на такое воздействие: проанализировано перераспределение полей напряжений и деформаций в системе, вызванное сейсмическим воздействием. Рассмотрен вопрос устойчивости установки: продемонстрировано, что приход сейсмической волны приводит к резкому росту напряжений в определенных элементах опорных колонн, что может привести к потере устойчивости. Для численного моделирования рассмотренной контактной задачи теории упругости использован метод конечных элементов. Проверка корректности постановки задачи и сходимости ее решения была выполнена путем рассмотрения известной задачи о вдавливании жесткого цилиндра в упругое полупространство. Показано, что использующаяся для анализа устойчивости самоподъемной буровой установки численная схема дает верные результаты для рассмотренной модельной задачи при условии корректного построения сетки конечных элементов. В рамках работы были исследованы роли различных факторов, определяющих условия достижения напряжениями в самоподъемной плавучей буровой установке критических значений: рассмотрены степень выраженности сейсмического воздействия, механические свойства донного грунта и глубина погружения опорных колонн установки в грунт. Сделаны предварительные выводы о необходимости заглубления опорных колонн в донный грунт с учетомег о механических свойств и характерной для региона сейсмичности. Представленный в работе подход может быть использован в качестве инструмента для прогноза рисков, связанных с освоениемм есторождений углеводородов, расположенных на континентальном шельфе, а использованная схема численного моделирования — для решения класса контактных задач теории упругости, требующих анализа динамических процессов.
Ключевые слова: сейсмическое воздействие, самоподъемная плавучая буровая установка, метод конечных элементов, механическая устойчивость, контактная задача теории упругости.
Numerical model of jack-up rig’s mechanical behavior under seismic loading
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 853-871The paper presents results of numerical modeling of stress-strain state of jack-up rigs used for shelf hydrocarbon reservoirs exploitation. The work studied the equilibrium stress state of a jack-up rig standing on seafloor and mechanical behavior of the rig under seismic loading. Surface elastic wave caused by a distant earthquake acts a reason for the loading. Stability of jack-up rig is the main topic of the research, as stability can be lost due to redistribution of stresses and strains in the elements of the rig due to seismic loading. Modeling results revealed that seismic loading can indeed lead to intermittent growth of stresses in particular elements of the rig’s support legs resulting into stability loss. These results were obtained using the finite element-based numerical scheme. The paper contains the proof of modeling results convergence obtained from analysis of one problem — the problem of stresses and strains distributions for the contact problem of a rigid cylinder indenting on elastic half space. The comparison between numerical and analytical solutions proved the used numerical scheme to be correct, as obtained results converged. The paper presents an analysis of the different factors influencing the mechanical behavior of the studied system. These factors include the degree of seismic loading, mechanical properties of seafloor sediments, and depth of support legs penetration. The results obtained from numerical modeling made it possible to formulate preliminary conclusions regarding the need to take site-specific conditions into account whenever planning the use of jack-up rigs, especially, in the regions with seismic activity. The approach presented in the paper can be used to evaluate risks related to offshore hydrocarbon reservoirs exploitation and development, while the reported numerical scheme can be used to solve some contact problems of theory of elasticity with the need to analyze dynamic processes.
-
Семантическая структуризация текстовых документов на основе паттернов сущностей естественного языка
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1185-1197Рассматривается технология создания паттернов из слов (понятий) естественного языка по текстовым данным в модели «мешок слов». Паттерны применяются для снижения размерности исходного пространства в описании документов и поиска семантически связанных слов по темам. Процесс снижения размерности реализуется через формирование по паттернам латентных признаков. Исследуется многообразие структур отношений документов для разбиения их на темы в латентном пространстве.
Считается, что заданное множество документов (объектов) разделено на два непересекающихся класса, для анализа которых необходимо использовать общий словарь. Принадлежность слов к общему словарю изначально неизвестна. Объекты классов рассматриваются в ситуации оппозиции друг к другу. Количественные параметры оппозиционности определяются через значения устойчивости каждого признака и обобщенные оценки объектов по непересекающимся наборам признаков.
Для вычисления устойчивости используются разбиения значений признаков на непересекающиеся интервалы, оптимальные границы которых определяются по специальному критерию. Максимум устойчивости достигается при условии, что в границах каждого интервала содержатся значения одного из двух классов.
Состав признаков в наборах (паттернах из слов) формируется из упорядоченной по значениям устойчивости последовательности. Процесс формирования паттернов и латентных признаков на их основе реализуется по правилам иерархической агломеративной группировки.
Набор латентных признаков используется для кластерного анализа документов по метрическим алгоритмам группировки. В процессе анализа применяется коэффициент контентной аутентичности на основе данных о принадлежности документов к классам. Коэффициент является численной характеристикой доминирования представителей классов в группах.
Для разбиения документов на темы предложено использовать объединение групп по отношению их центров. В качестве закономерностей по каждой теме рассматривается упорядоченная по частоте встречаемости последовательность слов из общего словаря.
Приводятся результаты вычислительного эксперимента на коллекциях авторефератов научных диссертаций. Сформированы последовательности слов из общего словаря по четырем темам.
Ключевые слова: тематическое моделирование, иерархическая агломеративная группировка, онтология, общий словарь, контентная аутентичность.
Semantic structuring of text documents based on patterns of natural language entities
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1185-1197The technology of creating patterns from natural language words (concepts) based on text data in the bag of words model is considered. Patterns are used to reduce the dimension of the original space in the description of documents and search for semantically related words by topic. The process of dimensionality reduction is implemented through the formation of patterns of latent features. The variety of structures of document relations is investigated in order to divide them into themes in the latent space.
It is considered that a given set of documents (objects) is divided into two non-overlapping classes, for the analysis of which it is necessary to use a common dictionary. The belonging of words to a common vocabulary is initially unknown. Class objects are considered as opposition to each other. Quantitative parameters of oppositionality are determined through the values of the stability of each feature and generalized assessments of objects according to non-overlapping sets of features.
To calculate the stability, the feature values are divided into non-intersecting intervals, the optimal boundaries of which are determined by a special criterion. The maximum stability is achieved under the condition that the boundaries of each interval contain values of one of the two classes.
The composition of features in sets (patterns of words) is formed from a sequence ordered by stability values. The process of formation of patterns and latent features based on them is implemented according to the rules of hierarchical agglomerative grouping.
A set of latent features is used for cluster analysis of documents using metric grouping algorithms. The analysis applies the coefficient of content authenticity based on the data on the belonging of documents to classes. The coefficient is a numerical characteristic of the dominance of class representatives in groups.
To divide documents into topics, it is proposed to use the union of groups in relation to their centers. As patterns for each topic, a sequence of words ordered by frequency of occurrence from a common dictionary is considered.
The results of a computational experiment on collections of abstracts of scientific dissertations are presented. Sequences of words from the general dictionary on 4 topics are formed.
-
Аддитивная регуляризация тематических моделей с быстрой векторизацией текста
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1515-1528Задача вероятностного тематического моделирования заключается в том, чтобы по заданной коллекции текстовых документов найти две матрицы: матрицу условных вероятностей тем в документах и матрицу условных вероятностей слов в темах. Каждый документ представляется в виде мультимножества слов, то есть предполагается, что для выявления тематики документа не важен порядок слов в нем, а важна только их частота. При таком предположении задача сводится к вычислению низкорангового неотрицательного матричного разложения, наилучшего по критерию максимума правдоподобия. Данная задача имеет в общем случае бесконечное множество решений, то есть является некорректно поставленной. Для регуляризации ее решения к логарифму правдоподобия добавляется взвешенная сумма оптимизационных критериев, с помощью которых формализуются дополнительные требования к модели. При моделировании больших текстовых коллекций хранение первой матрицы представляется нецелесообразным, поскольку ее размер пропорционален числу документов в коллекции. В то же время тематические векторные представления документов необходимы для решения многих задач текстовой аналитики — информационного поиска, кластеризации, классификации, суммаризации текстов. На практике тематический вектор вычисляется для каждого документа по необходимости, что может потребовать десятков итераций по всем словам документа. В данной работе предлагается способ быстрого вычисления тематического вектора для произвольного текста, требующий лишь одной итерации, то есть однократного прохода по всем словам документа. Для этого в модель вводится дополнительное ограничение в виде уравнения, позволяющего вычислять первую матрицу через вторую за линейное время. Хотя формально данное ограничение не является оптимизационным критерием, фактически оно выполняет роль регуляризатора и может применяться в сочетании с другими критериями в рамках теории аддитивной регуляризации тематических моделей ARTM. Эксперименты на трех свободно доступных текстовых коллекциях показали, что предложенный метод улучшает качество модели по пяти оценкам качества, характеризующим разреженность, различность, информативность и когерентность тем. Для проведения экспериментов использовались библиотеки с открытымк одомB igARTM и TopicNet.
Ключевые слова: автоматическая обработка текстов, обучение без учителя, тематическое моделирование, аддитивная регуляризация тематических моделей, EM-алгоритм, PLSA, LDA, ARTM, BigARTM, TopicNet.
Additive regularizarion of topic models with fast text vectorizartion
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.
-
Облачные вычисления для виртуального полигона
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 753-758В настоящее время облачные вычисления являются важной и актуальной темой в ИТ. Многие компании и учебные заведения развертывают облачные инфраструктуры, чтобы преодолеть свои проблемы, такие как легкость доступа к данным, обновление программного обеспечения с минимальными затратами, возможности неограниченного хранения данных и ряд других преимуществ по сравнению с традиционными сетевыми инфраструктурами. В работе рассматривается применение технологий облачных вычислений при моделировании морской среды и обработке данных. В данном случае облачные вычисления предлагается для интеграции и совместного использования морских информационных ресурсов. В статье облачные вычисления рассматриваются как средство снижения затрат при организации виртуального полигона в морских исследованиях.
Просмотров за год: 7.Nowadays cloud computing is an important topic in the field of information technology and computer system. Several companies and educational institutes have deployed cloud infrastructures to overcome their problems such as easy data access, software updates with minimal cost, large or unlimited storage, efficient cost factor, backup storage and disaster recovery, and some other benefits if compare with the traditional network infrastructures. The paper present the study of cloud computing technology for marine environmental data and processing. Cloud computing of marine environment information is proposed for the integration and sharing of marine information resources. It is highly desirable to perform empirical requiring numerous interactions with web servers and transfers of very large archival data files without affecting operational information system infrastructure. In this paper, we consider the cloud computing for virtual testbed to minimize the cost. That is related to real time infrastructure.
-
Естественные модели параллельных вычислений
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 781-785Курс «Естественные модели параллельных вычислений», читаемый студентам старших курсов факультета ВМК МГУ, посвящен рассмотрению вопросов суперкомпьютерной реализации естественных вычислительных моделей и является, по сути, введением в теорию естественных вычислений (natural computing) относительно нового раздела науки, образовавшегося на стыке математики, информатики и естественных наук (прежде всего биологии). Тематика естественных вычислений включает в себя как классические разделы, например клеточные автоматы, так и относительно новые, появившиеся в последние 10–20 лет, например методы роевого интеллекта. Несмотря на свое биологическое «происхождение», все эти модели находят широчайшее применение в областях, связанных с компьютерной обработкой данных. Исследования в области естественных вычислений также тесно связаны с вопросами и технологиями параллельных вычислений. Изложение теоретического материала курса сопровождается рассмотрением возможных схем распараллеливания вычислений, а в практической части курса предполагается выполнение студентами программной реализации рассматриваемых моделей с использованием технологии MPI и проведение численных экспериментов по исследованию эффективности выбранных схем распараллеливания вычислений.
Ключевые слова: естественные вычисления, эволюционные алгоритмы, искусственные биологические системы.
Natural models of parallel computations
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 781-785Просмотров за год: 17. Цитирований: 2 (РИНЦ).Course “Natural models of parallel computing”, given for senior students of the Faculty of Computational Mathematics and Cybernetics, Moscow State University, is devoted to the issues of supercomputer implementation of natural computational models and is, in fact, an introduction to the theory of natural computing, a relatively new branch of science, formed at the intersection of mathematics, computer science and natural sciences (especially biology). Topics of the natural computing include both already classic subjects such as cellular automata, and relatively new, introduced in the last 10–20 years, such as swarm intelligence. Despite its biological origin, all these models are widely applied in the fields related to computer data processing. Research in the field of natural computing is closely related to issues and technology of parallel computing. Presentation of theoretical material of the course is accompanied by a consideration of the possible schemes for parallel computing, in the practical part of the course it is supposed to perform by the students a software implementation using MPI technology and numerical experiments to investigate the effectiveness of the chosen schemes of parallel computing.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"