Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'time-series analysis':
Найдено статей: 21
  1. Коганов А.В., Ракчеева Т.А., Приходько Д.И.
    Экспериментальное выявление организации мысленных вычислений человека на основе алгебр разной ассоциативности
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 311-327

    Работа продолжает исследования по способности человека повышать производительность обработки информации, используя параллельную работу или повышение быстродействия анализаторов. Человек получает серию задач, решение которых требует переработки известного количества информации. Регистрируются время и правильность решения. По правильно решенным задачам определяется зависимость среднего времени решения от объема информации в задаче. В соответствии с предложенной ранее методикой задачи содержат вычисления выражений в двух алгебрах, одна из которых ассоциативная, а другая неассоциативная. Для облегчения работы испытуемых в опыте были использованы образные графические изображения элементов алгебры. Неассоциативные вычисления реализовывались в форме игры «Камень, ножницы, бумага». Надо было определить символ-победитель в длинной строке этих рисунков, считая, что они возникают последовательно слева направо и играют с предыдущим символом победителем. Ассоциативные вычисления были основаны на распознавании рисунков из конечного набора простых изображений. Надо было определить, какого рисунка из этого набора в строке не хватает, либо констатировать, что все рисунки присутствуют. В каждой задаче отсутствовало не более одной картинки. Вычисления в ассоциативной алгебре допускают параллельный счет, а при отсутствии ассоциативности возможны только последовательные вычисления. Поэтому анализ времени решения серий задач позволяет выявить последовательную равномерную, последовательную ускоренную и параллельную стратегии вычислений. В экспериментах было установлено, что для решения неассоциативных задач все испытуемые применяли равномерную последовательную стратегию. Для ассоциативных задач все испытуемые использовали параллельные вычисления, а некоторые использовали параллельные вычисления с ускорением по мере роста сложности задачи. Небольшая часть испытуемых при большой сложности, судя по эволюции времени решения, дополняла параллельный счет последовательным этапом вычислений (возможно, для контроля решения). Разработан специальный метод оценки скорости переработки входной информации человеком. Он позволил оценить уровень параллельности расчета в ассоциативных задачах. Была зарегистрирована параллельность уровня от двух до трех. Характерная скорость обработки информации в последовательном случае (примерно полтора символа в секунду) вдвое меньше типичной скорости распознавания изображений человеком. Видимо, разница времени обработки расходуется собственно на процесс вычислений. Для ассоциативной задачи в случае минимального объема информации время решения либо близко к неассоциативному случаю, либо меньше до двух раз. Вероятно, это связано с тем, что для малого числа символов распознавание практически исчерпывает вычисления для использованной неассоциативной задачи.

    Koganov A.V., Rakcheeva T.A., Prikhodko D.I.
    Experimental identification of the organization of mental calculations of the person on the basis of algebras of different associativity
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 311-327

    The work continues research on the ability of a person to improve the productivity of information processing, using parallel work or improving the performance of analyzers. A person receives a series of tasks, the solution of which requires the processing of a certain amount of information. The time and the validity of the decision are recorded. The dependence of the average solution time on the amount of information in the problem is determined by correctly solved problems. In accordance with the proposed method, the problems contain calculations of expressions in two algebras, one of which is associative and the other is nonassociative. To facilitate the work of the subjects in the experiment were used figurative graphic images of elements of algebra. Non-associative calculations were implemented in the form of the game “rock-paper-scissors”. It was necessary to determine the winning symbol in the long line of these figures, considering that they appear sequentially from left to right and play with the previous winner symbol. Associative calculations were based on the recognition of drawings from a finite set of simple images. It was necessary to determine which figure from this set in the line is not enough, or to state that all the pictures are present. In each problem there was no more than one picture. Computation in associative algebra allows the parallel counting, and in the absence of associativity only sequential computations are possible. Therefore, the analysis of the time for solving a series of problems reveals a consistent uniform, sequential accelerated and parallel computing strategy. In the experiments it was found that all subjects used a uniform sequential strategy to solve non-associative problems. For the associative task, all subjects used parallel computing, and some have used parallel computing acceleration of the growth of complexity of the task. A small part of the subjects with a high complexity, judging by the evolution of the solution time, supplemented the parallel account with a sequential stage of calculations (possibly to control the solution). We develop a special method for assessing the rate of processing of input information by a person. It allowed us to estimate the level of parallelism of the calculation in the associative task. Parallelism of level from two to three was registered. The characteristic speed of information processing in the sequential case (about one and a half characters per second) is twice less than the typical speed of human image recognition. Apparently the difference in processing time actually spent on the calculation process. For an associative problem in the case of a minimum amount of information, the solution time is near to the non-associativity case or less than twice. This is probably due to the fact that for a small number of characters recognition almost exhausts the calculations for the used non-associative problem.

    Просмотров за год: 16.
  2. Любушин А.А., Родионов Е.А.
    Анализ прогностических свойств тремора земной поверхности с помощью разложения Хуанга
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 939-958

    Предлагается метод анализа тремора земной поверхности, измеряемого средствами космической геодезии с целью выделения прогностических эффектов активизации сейсмичности. Метод иллюстрируется на примере совместного анализа совокупности синхронных временных рядов ежесуточных вертикальных смещений земной поверхности на Японских островах для интервала времени 2009–2023 гг. Анализ основан на разбиении исходных данных (1047 временных рядов) на блоки (кластеры станций) и последовательном применении метода главных компонент. Разбиение сети станций на кластеры производится методом k-средних из критерия максимума псевдо-статистики. Для Японии оптимальное число кластеров было выбрано равным 15. К временным рядам главных компонент от блоков станций применяется метод разложения Хуанга на последовательность независимых эмпирических мод колебаний (Empirical Mode Decomposition, EMD). Для обеспечения устойчивости оценок волновых форм EMD-разложения производилось усреднение 1000 независимых аддитивных реализаций белого шума ограниченной амплитуды. С помощью разложения Холецкого ковариационной матрицы волновых форм первых трех EMD-компонент в скользящем временном окне определены индикаторы аномального поведения тремора. Путем вычисления корреляционной функции между средними индикаторами аномального поведения и выде- лившейся сейсмической энергии в окрестности Японских островов установлено, что всплески меры ано- мального поведения тремора предшествуют выбросам сейсмической энергии. Целью статьи является про- яснение распространенных гипотез о том, что движения земной коры, регистрируемые средствами космической геодезии, могут содержать прогностическую информацию. То, что смещения, регистрируемые геодезическими методами, реагируют на последствия землетрясений, широко известно и многократно демонстрировалось. Но выделение геодезических эффектов, предвещающих сейсмические события, является значительно более сложной задачей. В нашей статье мы предлагаем один из методов обнаружения прогностических эффектов в данных космической геодезии.

    Lyubushin A.A., Rodionov E.A.
    Analysis of predictive properties of ground tremor using Huang decomposition
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 939-958

    A method is proposed for analyzing the tremor of the earth’s surface, measured by means of space geodesy, in order to highlight the prognostic effects of seismicity activation. The method is illustrated by the example of a joint analysis of a set of synchronous time series of daily vertical displacements of the earth’s surface on the Japanese Islands for the time interval 2009–2023. The analysis is based on dividing the source data (1047 time series) into blocks (clusters of stations) and sequentially applying the principal component method. The station network is divided into clusters using the K-means method from the maximum pseudo-F-statistics criterion, and for Japan the optimal number of clusters was chosen to be 15. The Huang decomposition method into a sequence of independent empirical oscillation modes (EMD — Empirical Mode Decomposition) is applied to the time series of principal components from station blocks. To provide the stability of estimates of the waveforms of the EMD decomposition, averaging of 1000 independent additive realizations of white noise of limited amplitude was performed. Using the Cholesky decomposition of the covariance matrix of the waveforms of the first three EMD components in a sliding time window, indicators of abnormal tremor behavior were determined. By calculating the correlation function between the average indicators of anomalous behavior and the released seismic energy in the vicinity of the Japanese Islands, it was established that bursts in the measure of anomalous tremor behavior precede emissions of seismic energy. The purpose of the article is to clarify common hypotheses that movements of the earth’s crust recorded by space geodesy may contain predictive information. That displacements recorded by geodetic methods respond to the effects of earthquakes is widely known and has been demonstrated many times. But isolating geodetic effects that predict seismic events is much more challenging. In our paper, we propose one method for detecting predictive effects in space geodesy data.

  3. Methi G., Kumar A.
    Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1091-1099

    The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.

    Methi G., Kumar A.
    Numerical Solution of Linear and Higher-order Delay Differential Equations using the Coded Differential Transform Method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1091-1099

    The aim of the paper is to obtain a numerical solution for linear and higher-order delay differential equations (DDEs) using the coded differential transform method (CDTM). The CDTM is developed and applied to delay problems to show the efficiency of the proposed method. The coded differential transform method is a combination of the differential transform method and Mathematica software. We construct recursive relations for a few delay problems, which results in simultaneous equations, and solve them to obtain various series solution terms using the coded differential transform method. The numerical solution obtained by CDTM is compared with an exact solution. Numerical results and error analysis are presented for delay differential equations to show that the proposed method is suitable for solving delay differential equations. It is established that the delay differential equations under discussion are solvable in a specific domain. The error between the CDTM solution and the exact solution becomes very small if more terms are included in the series solution. The coded differential transform method reduces complex calculations, avoids discretization, linearization, and saves calculation time. In addition, it is easy to implement and robust. Error analysis shows that CDTM is consistent and converges fast. We obtain more accurate results using the coded differential transform method as compared to other methods.

  4. В данной статье решается задача разработки технологии сбора исходных данных для построения моделей оценки функционального состояния человека. Данное состояние оценивается по зрачковой реакции человека на изменение освещенности на основе метода пупиллометрии. Данный метод предполагает сбор и анализ исходных данных (пупиллограмм), представленных в виде временных рядов, характеризующих динамику изменения зрачков человека на световое импульсное воздействие. Анализируются недостатки традиционного подхода к сбору исходных данных с применением методов компьютерного зрения и сглаживания временных рядов. Акцентируется внимание на важности качества исходных данных для построения адекватных математических моделей. Актуализируется необходимость ручной разметки окружностей радужной оболочки глаза и зрачка для повышения точности и качества исходных данных. Описываются этапы предложенной технологии сбора исходных данных. Приводится пример полученной пупиллограммы, имеющей гладкую форму и не содержащей выбросы, шумы, аномалии и пропущенные значения. На основе представленной технологии разработан программно-аппаратный комплекс, представляющий собой совокупность специального программного обеспечения, имеющего два основных модуля, и аппаратной части, реализованной на базе микрокомпьютера Raspberry Pi 4 Model B, с периферийным оборудованием, реализующим заданный функционал. Для оценки эффективности разработанной технологии используются модели однослойного персептрона и коллектива нейронных сетей, для построения которых использовались исходные данные о функциональном состоянии утомления человека. Проведенные исследования показали, что применение ручной разметки исходных данных (по сравнению с автоматическими методами компьютерного зрения) приводит к снижению числа ошибок 1-го и 2-года рода и, соответственно, повышению точности оценки функционального состояния человека. Таким образом, представленная технология сбора исходных данных может эффективно использоваться для построения адекватных моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности. Использование таких моделей актуально в решении отдельных задач обеспечения транспортной безопасности, в частности мониторинга функционального состояния водителей.

    This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.

  5. Работа посвящена анализу медико-биологических данных, получаемых с помощью локомоторных тренировок и тестирований космонавтов, проводимых как на Земле, так и во время полета. Данные эксперименты можно описать как движение космонавта по беговой дорожке согласно прописанному регламенту в различных скоростных режимах, во время которых не только записывается скорость, но и собирается ряд показателей, включающих частоту сердечных сокращений, величину давления на опору и пр. С целью анализа динамики состояния космонавта на протяжении длительного времени, для независимой оценки целевых показателей необходимо проводить качественную сегментацию режимов его движения. Особую актуальность данная задача приобретает при разработке автономной системы жизнеобеспечения космонавтов, которая будет действовать без сопровождения персонала с Земли. При сегментации целевых данных сложность заключается в наличии различных аномалий, включая отход испытуемого от заранее прописанного регламента, переходы между режимами движения произвольного вида и длительности, аппаратные сбои и пр. Статья включает в себя подробный обзор ряда современных ретроспективных (оффлайн) непараметрических методов поиска многократных разладок во временном ряде, где под разладкой понимается резкое изменение свойств наблюдаемого ряда, происходящее в неизвестный заранее момент времени. Особое внимание уделено алгоритмам и статистическим показателям, которые определяют степень однородности данных, а также способам поиска точек разладки. В данной работе рассматриваются подходы, основанные на методах динамического программирования и скользящего окна. Вторая часть статьи посвящена численному моделированию представленных методов на характерных примерах экспериментальных данных, включающих как простые, так и сложные скоростные профили движения. Проведенный анализ позволил выделить методы, которые в дальнейшем будут проанализированы на полном корпусе данных. Предпочтение отдается методам, обеспечивающим близость разметки к заданному эталону, потенциально позволяющим детектировать обе границы переходных процессов, а также обладающим робастностью относительно внутренних параметров.

    Shestoperov A.I., Ivchenko A.V., Fomina E.V.
    Changepoint detection in biometric data: retrospective nonparametric segmentation methods based on dynamic programming and sliding windows
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1295-1321

    This paper is dedicated to the analysis of medical and biological data obtained through locomotor training and testing of astronauts conducted both on Earth and during spaceflight. These experiments can be described as the astronaut’s movement on a treadmill according to a predefined regimen in various speed modes. During these modes, not only the speed is recorded but also a range of parameters, including heart rate, ground reaction force, and others, are collected. In order to analyze the dynamics of the astronaut’s condition over an extended period, it is necessary to perform a qualitative segmentation of their movement modes to independently assess the target metrics. This task becomes particularly relevant in the development of an autonomous life support system for astronauts that operates without direct supervision from Earth. The segmentation of target data is complicated by the presence of various anomalies, such as deviations from the predefined regimen, arbitrary and varying duration of mode transitions, hardware failures, and other factors. The paper includes a detailed review of several contemporary retrospective (offline) nonparametric methods for detecting multiple changepoints, which refer to sudden changes in the properties of the observed time series occurring at unknown moments. Special attention is given to algorithms and statistical measures that determine the homogeneity of the data and methods for detecting change points. The paper considers approaches based on dynamic programming and sliding window methods. The second part of the paper focuses on the numerical modeling of these methods using characteristic examples of experimental data, including both “simple” and “complex” speed profiles of movement. The analysis conducted allowed us to identify the preferred methods, which will be further evaluated on the complete dataset. Preference is given to methods that ensure the closeness of the markup to a reference one, potentially allow the detection of both boundaries of transient processes, as well as are robust relative to internal parameters.

  6. Никулин В.Н., Одинцова А.С.
    Статистически справедливая цена на европейские опционы колл согласно дискретной модели «среднее–дисперсия»
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 861-874

    Мы рассматриваем портфель с опционом колл и соответствующим базовым активом при стандартном предположении, что рыночная цена является случайной величиной с логнормальным распределением. Минимизируя дисперсию (риск хеджирования) портфеля на дату погашения опциона, мы находим оптимальное соотношение опциона и актива в портфеле. Как прямое следствие мы получим статистически справедливую цену опциона колл в явной форме (случай опциона пут может быть рассмотрен аналогичным образом). В отличие от известной теории Блэка–Шоулза, любой портфель не может рассматриваться свободным от риска, потому что никаких дополнительных сделок в течение контракта не предполагается, но среднестатистический риск, относящийся к достаточно большому количеству независимых портфелей, стремится к нулю асимптотически. Это свойство иллюстрируется в экспериментальном разделе на основе ежедневных цен акций 37-ми лидирующих американских компаний за период времени, начиная с апреля 2006 года по январь 2013 года.

    Nikulin V.N., Odintsova A.S.
    Statistically fair price for the European call options according to the discreet mean/variance model
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 861-874

    We consider a portfolio with call option and the corresponding underlying asset under the standard assumption that stock-market price represents a random variable with lognormal distribution. Minimizing the variance hedging risk of the portfolio on the date of maturity of the call option we find a fraction of the asset per unit call option. As a direct consequence we derive the statistically fair lookback call option price in explicit form. In contrast to the famous Black–Scholes theory, any portfolio cannot be regarded as  risk-free because no additional transactions are supposed to be conducted over the life of the contract, but the sequence of independent portfolios will reduce risk to zero asymptotically. This property is illustrated in the experimental section using a dataset of daily stock prices of 37 leading US-based companies for the period from April 2006 to January 2013.

    Просмотров за год: 1.
  7. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

    Makhov S.A.
    Forecasting demographic and macroeconomic indicators in a distributed global model
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 757-779

    The paper present a dynamic macro model of world dynamics. The world is divided into 19 geographic regions in the model. The internal development of the regions is described by regression equations for demographic and economic indicators (Population, Gross Domestic Product, Gross Capital Formation). The bilateral trade flows from region to region describes interregional interactions and represented the trade submodel. Time, the gross product of the exporter and the gross product of the importer were used as regressors. Four types were considered: time pair regression — dependence of trade flow on time, export function — dependence of the share of trade flow in the gross product of the exporter on the gross product of the importer, import function — dependence of the share of trade flow in the gross product of the importer on the gross product of the exporter, multiple regression — dependence of trade flow on the gross products of the exporter and importer. Two types of functional dependence were used for each type: linear and log-linear, in total eight variants of the trading equation were studied. The quality of regression models is compared by the coefficient of determination. By calculations the model satisfactorily approximates the dynamics of monotonically changing indicators. The dynamics of non-monotonic trade flows is analyzed, three types of functional dependence on time are proposed for their approximation. It is shown that the number of foreign trade series can be approximated by the space of seven main components with a 10% error. The forecast of regional development and global dynamics up to 2040 is constructed.

  8. Хавинсон М.Ю., Лосев А.С., Кулаков М.П.
    Моделирование численности занятого, безработного и экономически неактивного населения Дальнего Востока России
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 251-264

    Исследования кризисной социально-демографической ситуации на Дальнем Востоке требуют не только применения традиционных статистических методов, но и концептуального анализа возможных сценариев развития, основанного на принципах синергетики. Статья посвящена моделированию численности занятого, безработного и экономически неактивного населения Дальнего Востока на основе нелинейных дифференциальных уравнений с постоянными коэффициентами. Рассмотрена базовая нелинейная математическая модель, основанная на принципе парных взаимодействий и являющаяся частным случаем модели борьбы условных информаций по Д.С. Чернавскому. Методом наименьших квадратов, адаптированным для данной модели, найдены точечные оценки параметров, характеризующих динамику численностей занятых, безработных и экономически неактивного населения Дальнего Востока России за 2000–2017 гг. Средняя ошибка аппроксимации составила не более 5.17 %. Полученная точечная оценка параметров в асимптотическом случае соответствует неустойчивому фокусу (расходящимся колебаниям оцениваемых показателей численности), что свидетельствует, в аспекте проведенного моделирования, о постепенном увеличении диспропорций между рассматриваемыми группами населения и обвале их динамики в инерционном сценарии. Обнаружено, что в окрестности инерционного сценария формируется нерегулярная хаотическая динамика, что усложняет возможность эффективного управления. Установлено, что изменение лишь одного параметра в модели (в частности, миграционного) при отсутствии структурных социально-экономических сдвигов может лишь отсрочить обвал динамики в долгосрочной перспективе либо привести к появлению сложно предсказуемых режимов (хаоса). Найдены другие оценки параметров модели, соответствующие устойчивой динамике (устойчивому фокусу), которая неплохо согласуется с реальной динамикой численности рассматриваемых групп населения. Согласно исследованной математической модели бифуркационными являются параметры, характеризующие темпы оттока трудоспособного населения, рождаемость (омоложение населения), а также темп миграционного притока безработных. Показано, что переход к устойчивому сценарию возможен при одновременном воздействии на несколько этих параметров, что требует сложного комплекса мероприятий по закреплению населения Дальнего Востока России и роста уровня их доходов, в пересчете на компенсацию инфраструктурной разреженности. Для разработки конкретных мер в рамках государственной политики необходимы дальнейшие экономические и социологические исследования.

    Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

  9. Моисеев Н.А., Назарова Д.И., Семина Н.С., Максимов Д.А.
    Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575

    Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.

    Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.

    Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.

    По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.

    Moiseev N.A., Nazarova D.I., Semina N.S., Maksimov D.A.
    Changepoint detection on financial data using deep learning approach
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 555-575

    The purpose of this study is to develop a methodology for change points detection in time series, including financial data. The theoretical basis of the study is based on the pieces of research devoted to the analysis of structural changes in financial markets, description of the proposed algorithms for detecting change points and peculiarities of building classical and deep machine learning models for solving this type of problems. The development of such tools is of interest to investors and other stakeholders, providing them with additional approaches to the effective analysis of financial markets and interpretation of available data.

    To address the research objective, a neural network was trained. In the course of the study several ways of training sample formation were considered, differing in the nature of statistical parameters. In order to improve the quality of training and obtain more accurate results, a methodology for feature generation was developed for the formation of features that serve as input data for the neural network. These features, in turn, were derived from an analysis of mathematical expectations and standard deviations of time series data over specific intervals. The potential for combining these features to achieve more stable results is also under investigation.

    The results of model experiments were analyzed to compare the effectiveness of the proposed model with other existing changepoint detection algorithms that have gained widespread usage in practical applications. A specially generated dataset, developed using proprietary methods, was utilized as both training and testing data. Furthermore, the model, trained on various features, was tested on daily data from the S&P 500 index to assess its effectiveness in a real financial context.

    As the principles of the model’s operation are described, possibilities for its further improvement are considered, including the modernization of the proposed model’s structure, optimization of training data generation, and feature formation. Additionally, the authors are tasked with advancing existing concepts for real-time changepoint detection.

  10. Каменев Г.К., Каменев И.Г.
    Многокритериальный метрический анализ данных при моделировании человеческого капитала
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1223-1245

    В статье описываетсявы числимаям одель человека в информационной экономике и демонстрируется многокритериальный оптимизационный подход к метрическому анализу модельных данных. Традиционный подход к идентификации и исследованию модели предполагает идентификацию модели по временным рядам и прогнозирование дальнейшей динамики ряда. Однако этот подход неприменим к моделям, некоторые важнейшие переменные которых не наблюдаютсяя вно, и известны только некоторые типичные границы или особенности генеральной совокупности. Такая ситуация часто встречается в социальных науках, что делает модели сугубо теоретическими. Чтобы избежать этого, для (неявной) идентификации и изучения таких моделей предлагается использовать метод метрического анализа данных (MMDA), основанный на построении и анализе метрических сетей Колмогорова – Шеннона, аппроксимирующих генеральную совокупность данных модельной генерации в многомерном пространстве социальных характеристик. С помощью этого метода идентифицированы коэффициенты модели и изучены особенности ее фазовых траекторий. Представленнаяв статье модель рассматривает человека как субъекта, обрабатывающего информацию, включая его информированность и когнитивные способности. Составлены пожизненные индексы человеческого капитала: креативного индивида (обобщающего когнитивные способности) и продуктивного (обобщает объем освоенной человеком информации). Поставлена задача их многокритериальной (двухкритериальной) оптимизации с учетом ожидаемой продолжительности жизни. Такой подход позволяет выявить и экономически обосновать требования к системе образования и социализации (информационному окружению) человека до достиженияим взрослого возраста. Показано, что в поставленной оптимизационной задаче возникает Парето-граница, причем ее тип зависит от уровня смертности: при высокой продолжительности жизни доминирует одно решение, в то время как для более низкой продолжительности жизни существуют различные типы Парето-границы. В частности, в случае России применим принцип Парето: значительное увеличение креативного человеческого капитала индивида возможно за счет небольшого сниженияпр одуктивного человеческого капитала (обобщение объема освоенной человеком информации). Показано, что рост продолжительности жизни делает оптимальным компетентностный подход, ориентированный на развитие когнитивных способностей, в то время как при низкой продолжительности жизни предпочтительнее знаниевый подход.

    Kamenev G.K., Kamenev I.G.
    Multicriterial metric data analysis in human capital modelling
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1223-1245

    The article describes a model of a human in the informational economy and demonstrates the multicriteria optimizational approach to the metric analysis of model-generated data. The traditional approach using the identification and study involves the model’s identification by time series and its further prediction. However, this is not possible when some variables are not explicitly observed and only some typical borders or population features are known, which is often the case in the social sciences, making some models pure theoretical. To avoid this problem, we propose a method of metric data analysis (MMDA) for identification and study of such models, based on the construction and analysis of the Kolmogorov – Shannon metric nets of the general population in a multidimensional space of social characteristics. Using this method, the coefficients of the model are identified and the features of its phase trajectories are studied. In this paper, we are describing human according to his role in information processing, considering his awareness and cognitive abilities. We construct two lifetime indices of human capital: creative individual (generalizing cognitive abilities) and productive (generalizing the amount of information mastered by a person) and formulate the problem of their multi-criteria (two-criteria) optimization taking into account life expectancy. This approach allows us to identify and economically justify the new requirements for the education system and the information environment of human existence. It is shown that the Pareto-frontier exists in the optimization problem, and its type depends on the mortality rates: at high life expectancy there is one dominant solution, while for lower life expectancy there are different types of Paretofrontier. In particular, the Pareto-principle applies to Russia: a significant increase in the creative human capital of an individual (summarizing his cognitive abilities) is possible due to a small decrease in the creative human capital (summarizing awareness). It is shown that the increase in life expectancy makes competence approach (focused on the development of cognitive abilities) being optimal, while for low life expectancy the knowledge approach is preferable.

Страницы: предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.