Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'temperature fluctuations':
Найдено статей: 6
  1. Рогожкин С.А., Аксёнов А.А., Жлуктов С.В., Осипов С.Л., Фадеев И.Д., Шапоренко Е.В., Шепелев С.Ф., Шмелев В.В.
    Использование URANS подхода для определения пульсаций температуры при перемешивании трех разнотемпературных струй натрия
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 923-935

    Рассматривается возможность определения пульсаций температуры на основе URANS подхода. Представлены результаты численного моделирования процессов перемешивания трех разнотемпературных струй натрия с использованием программного комплекса FlowVision и модели турбулентного теплопереноса LMS. Приведено сравнение результатов расчетов и экспериментальных данных. Обоснована возможность определения энергонесущих частот температурных пульсаций при перемешивании разнотемпературных потоков натрия с использованием URANS подхода и модели LMS.

    Rogozhkin S.A., Aksenov A.A., Zhluktov S.V., Osipov S.L., Fadeev I.D., Shaporenko E.V., Shepelev S.F., Shmelev V.V.
    Use of URANS approach for determination of temperature fluctuations when mixing triple-jet sodium at different temperatures
    Computer Research and Modeling, 2014, v. 6, no. 6, pp. 923-935

    The possibility to study temperature fluctuations using URANS approach is studied. The results of numerical simulation of mixing processes for triple-jet sodium at different temperatures are presented. The processes were simulated using FlowVision software system and LMS model for turbulent heat transfer. The analysis and experiment data are compared. Validated was the possibility to determine the energy-carrying frequencies of temperature fluctuations using URANS approach and LMS model when mixing triple-jet sodium at different temperatures.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  2. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
  3. Фиалко Н.С.
    Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72

    Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.

    Fialko N.S.
    Mixed algorithm for modeling of charge transfer in DNA on long time intervals
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

    Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  4. В работе разработан кластерный метод математического моделирования интервально-стохастических тепловых процессов в сложных технических, в частности электронных, системах (ЭС). В кластерном методе конструкция сложной ЭС представляется в виде тепловой модели, являющейся системой кластеров, каждый из которых содержит ядро, объединяющее в себе тепловыделяющие элементы, попадающие в данный кластер, оболочку кластера и поток среды, протекающий через кластер. Состояние теплового процесса в каждом кластере и в каждый момент времени характеризуется тремя интервально-стохастическими переменными состояния, а именно температурами ядра, оболочки и потока среды. При этом элементы каждого кластера, а именно ядро, оболочка и поток среды, находятся в тепловом взаимодействии между собой и элементами соседних кластеров. В отличие от существующих методов кластерный метод позволяет моделировать тепловые процессы в сложных ЭС с учетом неравномерного распределения температуры в потоке среды нагнетаемой в ЭС, сопряженного характера теплообмена между пото- ком среды в ЭС, ядрами и оболочками кластеров и интервально-стохастического характера тепловых процессов в ЭС, вызванного статистическим технологическим разбросом изготовления и монтажа электронных элементов в ЭС, и случайными флуктуациями тепловых параметров окружающей среды. Математическая модель, описывающая состояния тепловых процессов в кластерной тепловой модели, представляет собой систему интервально-стохастических матрично-блочных уравнений с матричными и векторными блоками, соответствующими кластерам тепловой модели. Решением интервально-стохастических уравнений являются статистические меры переменных состояния тепловых процессов в кластерах — математические ожидания, ковариации между переменными состояния и дисперсии. Методика применения кластерного метода показана на примере реальной ЭС.

    Madera A.G.
    Cluster method of mathematical modeling of interval-stochastic thermal processes in electronic systems
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1023-1038

    A cluster method of mathematical modeling of interval-stochastic thermal processes in complex electronic systems (ES), is developed. In the cluster method, the construction of a complex ES is represented in the form of a thermal model, which is a system of clusters, each of which contains a core that combines the heat-generating elements falling into a given cluster, the cluster shell and a medium flow through the cluster. The state of the thermal process in each cluster and every moment of time is characterized by three interval-stochastic state variables, namely, the temperatures of the core, shell, and medium flow. The elements of each cluster, namely, the core, shell, and medium flow, are in thermal interaction between themselves and elements of neighboring clusters. In contrast to existing methods, the cluster method allows you to simulate thermal processes in complex ESs, taking into account the uneven distribution of temperature in the medium flow pumped into the ES, the conjugate nature of heat exchange between the medium flow in the ES, core and shells of clusters, and the intervalstochastic nature of thermal processes in the ES, caused by statistical technological variation in the manufacture and installation of electronic elements in ES and random fluctuations in the thermal parameters of the environment. The mathematical model describing the state of thermal processes in a cluster thermal model is a system of interval-stochastic matrix-block equations with matrix and vector blocks corresponding to the clusters of the thermal model. The solution to the interval-stochastic equations are statistical measures of the state variables of thermal processes in clusters - mathematical expectations, covariances between state variables and variance. The methodology for applying the cluster method is shown on the example of a real ES.

  5. Прудников В.В., Прудников П.В., Поспелов Е.А.
    Компьютерное моделирование неравновесного критического поведения трехмерной модели Изинга
    Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 119-129

    Осуществлено численное моделирование с применением алгоритма тепловой бани неравновесного критического поведения в трехмерной как однородной, так и структурно неупорядоченной модели Изинга. На основе анализа двухвременной зависимости автокорреляционных функций и динамической восприимчивости для систем со спиновыми концентрациями p = 1,0, = 0,8 и 0,6 были выявлены эффекты старения c аномальным замедлением релаксации системы с ростом времени ожидания. Доказано нарушение флуктуационно-диссипативной теоремы и получены значения универсального предельного флуктуационно-диссипативного отношения для рассматриваемых систем. Показано, что увеличение концентрации дефектов структуры приводит к усилению эффектов старения.

    Prudnikov V.V., Prudnikov P.V., Pospelov E.A.
    Monte Carlo simulation of nonequilibrium critical behavior of 3D Ising model
    Computer Research and Modeling, 2014, v. 6, no. 1, pp. 119-129

    Investigation of influence of non-equilibrium initial states and structural disorder on characteristics of anomalous slow non-equilibrium critical behavior of three-dimensional Ising model is carried out. The unique ageing properties and violations of the equilibrium fluctuation-dissipation theorem are observed for considered pure and disordered systems which were prepared in high-temperature initial state and then quenched in their critical points. The heat-bath algorithm description of ageing properties in non-equilibrium critical behavior of three-dimensional Ising model with spin concentrations p = 1.0, p = 0.8, and 0.6 is realized. On the base of analysis of such two-time quantities as autocorrelation function and dynamical susceptibility were demonstrated the ageing effects and were calculated asymptotic values of universal fluctuation-dissipation ratio in these systems. It was shown that the presence of defects leads to aging gain.

    Просмотров за год: 11.
  6. Фиалко Н.С., Ольшевец М.М., Лахно В.Д.
    Численное исследование модели Холстейна в разных термостатах
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 489-502

    На основе гамильтониана Холстейна промоделирована динамика заряда, привнесенного в молекулярную цепочку сайтов, при разной температуре. При расчете температура цепочки задается начальными данными — случайными гауссовыми распределениями скоростей и смещений сайтов. Рассмотрены разные варианты начального распределенияз арядовой плотности. Расчеты показывают, что система на больших расчетных временах переходит к колебаниям около нового равновесного состояния. Для одинаковых начальных скоростей и смещений средняя кинетическая энергия (и, соответственно, температура $T$) цепочки меняется в зависимости от начального распределения зарядовой плотности: убывает при внесении в цепочку полярона или увеличивается, если в начальный момент электронная часть энергии максимальна.

    Проведено сравнение с результатами, полученными ранее в модели с термостатом Ланжевена. В обоих случаях существование полярона определяется тепловой энергией всей цепочки. По результатам моделирования, переход от режима полярона к делокализованному состоянию происходит в одинаковой области значений тепловой энергии цепочки $N$ сайтов ~ $NT$ для обоих вариантов термостата, с дополнительной корректировкой: для гамильтоновой системы температура не соответствует начально заданной, а определяется на больших расчетных временах из средней кинетической энергии цепочки.

    В поляронной области применение разных способов имитации температуры приводит к ряду существенных различий в динамике системы. В области делокализованного состояния заряда, для больших температур, результаты, усредненные по набору траекторий в системе со случайной силой, и результаты, усредненные по времени для гамильтоновой системы, близки, что не противоречит гипотезе эргодичности. С практической точки зрения для больших температур T ≈ 300 K при моделировании переноса заряда в однородных цепочках можно использовать любой вариант задания термостата.

    Fialko N.S., Olshevets M.M., Lakhno V.D.
    Numerical study of the Holstein model in different thermostats
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 489-502

    Based on the Holstein Hamiltonian, the dynamics of the charge introduced into the molecular chain of sites was modeled at different temperatures. In the calculation, the temperature of the chain is set by the initial data ¡ª random Gaussian distributions of velocities and site displacements. Various options for the initial charge density distribution are considered. Long-term calculations show that the system moves to fluctuations near a new equilibrium state. For the same initial velocities and displacements, the average kinetic energy, and, accordingly, the temperature of the T chain, varies depending on the initial distribution of the charge density: it decreases when a polaron is introduced into the chain, or increases if at the initial moment the electronic part of the energy is maximum. A comparison is made with the results obtained previously in the model with a Langevin thermostat. In both cases, the existence of a polaron is determined by the thermal energy of the entire chain.

    According to the simulation results, the transition from the polaron mode to the delocalized state occurs in the same range of thermal energy values of a chain of $N$ sites ~ $NT$ for both thermostat options, with an additional adjustment: for the Hamiltonian system the temperature does not correspond to the initially set one, but is determined after long-term calculations from the average kinetic energy of the chain.

    In the polaron region, the use of different methods for simulating temperature leads to a number of significant differences in the dynamics of the system. In the region of the delocalized state of charge, for high temperatures, the results averaged over a set of trajectories in a system with a random force and the results averaged over time for a Hamiltonian system are close, which does not contradict the ergodic hypothesis. From a practical point of view, for large temperatures T ≈ 300 K, when simulating charge transfer in homogeneous chains, any of these options for setting the thermostat can be used.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.