Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Тесты проверки параллельной организации логических вычислений, основанные на алгебре и автоматах
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 621-638Работа продолжает опубликованные ранее исследования по способности человека повышать производительность обработки информации при параллельном выполнении нескольких логических операций заданного вида. В статье предлагаются новые тесты, позволяющие выявлять указанную способность человеческого мозга в серии предъявлений. Производительность человека определяется средним количеством информации, которую обрабатывает человек в единицу времени, решая серию тестовых задач. Сложность задачи в каждой серии тестов определяется средним количеством логических операций, которые надо выполнить для решения с учетом статистических свойств серии задач. Тесты строятся таким образом, чтобы сложность контролировалась. Изучается зависимость производительности испытуемого от сложности задач в серии. Если человек использует последовательный алгоритм решения и не меняет скорости выполнения логических операций, то производительность не зависит от сложности и среднее время решения задачи в серии примерно пропорционально сложности. Если скорость выполнения операций растет с повышением сложности (растет концентрация внимания), то увеличивается и производительность. Тот же эффект возникает, если человек при достаточно высокой сложности задачи начинает выполнять несколько логических операций одновременно (параллельные вычисления). Для контроля причин роста производительности строятся контрольные тесты на том же классе логических операций, в которых параллельная организация счета малоэффективна. Если рост производительности наблюдается как на основных, так и на контрольных тестах, то причиной роста производительности является увеличение быстродействия. Если же на контрольных тестах нет роста производительности, а на основных тестах рост имеется, то причиной роста является параллельный счет. С точки зрения теории операций это означает использование одновременной работы нескольких процессоров, каждый из которых в единицу времени перерабатывает не более некоторого известного числа элементов входных данных или промежуточных результатов (производительность процессора). В данной статье предлагается система тестов, в которой используется аппарат универсальных алгебр и теории автоматов. Работа является продолжением цикла работ по исследованию способностей человека к параллельным вычислениям. Ранее использованные тесты в экспериментах показали эффективность методики. Основные предыдущие публикации на эту тему приведены в списке литературы. Задачи в новых предлагаемых тестах можно описать как вычисление результата серии последовательных однотипных операций из некоторой специальной алгебры. Если операция ассоциативная, то с помощью удачной группировки вычислений можно эффективно применить параллельный счет. Анализируется зависимость времени решения задачи от сложности. Чтобы выявлять ситуации, когда человек увеличивает быстродействие одного процессора по мере роста сложности, требуется предъявить серии задач с похожими операциями, но в неассоциативной алгебре. Для таких задач параллельный счет малоэффективен с точки зрения отношения прироста производительности к увеличению числа процессоров. Так формируется контрольная группа тестов. В статье рассмотрен еще один класс тестов, основанных на расчете траектории состояния заданного формального автомата при задании входной последовательности. Исследован специальный класс автоматов (реле), конструкция которых влияет на эффективность параллельного расчета финального состояния. Для всех тестов оценивается эффективность параллельного счета. Эксперименты с новыми тестами не входят в данную статью.
Ключевые слова: параллельный счет, психологический тест, алгебра, ассоциативность, формальный автомат.
The tests for checking of the parallel organization in logical calculation which are based on the algebra and the automats
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 621-638Просмотров за год: 14. Цитирований: 1 (РИНЦ).We build new tests which permit to increase the human capacity for the information processing by the parallel execution of the several logic operations of prescribed type. For checking of the causes of the capacity increasing we develop the check tests on the same logic operations class in which the parallel organization of the calculations is low-effectively. We use the apparatus of the universal algebra and automat theory. This article is the extension of the cycle of the work, which investigates the human capacity for the parallel calculations. The general publications on this theme content in the references. The tasks in the described tests may to define in the form of the calculation of the result in the sequence of the same type operations from some algebra. If this operation is associative then the parallel calculation is effectively by successful grouping of process. In Theory of operations that is the using the simultaneous work several processors. Each processor transforms in the time unit the certain known number of the elements of the input date or the intermediate results (the processor productivity). Now it is not known what kind elements of date are using by the brain for the logical or mathematical calculation, and how many elements are treating in the time units. Therefore the test contains the sequence of the presentations of the tasks with different numbers of logical operations in the fixed alphabet. That is the measure of the complexity for the task. The analysis of the depending of the time for the task solution from the complexity gives the possible to estimate the processor productivity and the form of the calculate organization. For the sequence calculations only one processor is working, and the time of solution is a line function of complexity. If the new processors begin to work in parallel when the complexities of the task increase than the depending of the solution time from complexity is represented by the curve which is convex at the bottom. For the detection of situation when the man increases the speed of the single processor under the condition of the increasing complexity we use the task series with similar operations but in the no associate algebra. In such tasks the parallel calculation is little affectivity in the sense of the increasing efficiency by the increasing the number of processors. That is the check set of the tests. In article we consider still one class of the tests, which are based on the calculation of the trajectory of the formal automat state if the input sequence is determined. We investigate the special class of automats (relay) for which the construction affect on the affectivity of the parallel calculations of the final automat state. For all tests we estimate the affectivity of the parallel calculation. This article do not contained the experiment results.
-
Модель формирования первичных поведенческих паттернов с адаптивным поведением на основе использования комбинации случайного поиска и опыта
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 941-950В работе предложен адаптивный алгоритм, моделирующий процесс формирования начальных поведенческих навыков на примере системы «глаза–манипулятор» анимата. Ситуация формирования начальных поведенческих навыков возникает, например, когда ребенок осваивает управление своими руками на основе понимания связи между исходно неидентифицированными пятнами на сетчатке своих глаз и положением реального предмета. Поскольку навыки управления телом не «вшиты» исходно в головной и спинной мозг на уровне инстинктов, то человеческому ребенку, как и большинству детенышей других млекопитающих, приходится осваивать эти навыки в режиме поискового поведения. Поисковое поведение начинается с метода проб и ошибок в чистом виде, затем его вклад постепенно уменьшается по мере освоения своего тела и окружающей среды. Поскольку образцов правильного поведения на этом этапе развития организм не имеет, то единственным способом выделения правильных навыков является положительное подкрепление при достижении цели. Ключевой особенностью предлагаемого алгоритма является фиксация в режиме импринтинга только завершающих действий, которые привели к успеху, или, что очень важно, привели к уже знакомой запечатленной ситуации, однозначно приводящей к успеху. Со временем непрерывная цепочка правильных действий удлиняется — максимально используется предыдущий позитивный опыт, а негативный «забывается» и не используется. Тем самым наблюдается постепенная замена случайного поиска целенаправленными действиями, что наблюдается и у реальных детенышей.
Тем самым алгоритм способен устанавливать соответствие между закономерностями окружающего мира и «внутренними ощущениями», внутренним состоянием самого анимата. В предлагаемой модели анимата использовалось 2 типа нейросетей: 1) нейросеть NET1, на вход которой подавались текущие положения кисти руки и целевой точки, а на выходе — двигательные команды, направляющие «кисть» манипулятора анимата к целевой точке; 2) нейросеть NET2, которая на входе получала координаты цели и текущей координаты «кисти», а на выходе формировала значение вероятности того, что анимату уже «знакома» эта ситуация и он «знает», как на нее реагировать. Благодаря такой архитектуре у анимата есть возможность опираться на «опыт» нейросети в распознанных ситуациях, когда отклик от сети NET2 близок к 1, и, с другой стороны, запускать случайный поиск, когда опыта функционирования в этой области зрительного поля у анимата нет (отклик NET2 близок к 0).
Model of formation of primary behavioral patterns with adaptive behavior based on the combination of random search and experience
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 941-950Просмотров за год: 6. Цитирований: 2 (РИНЦ).In this paper, we propose an adaptive algorithm that simulates the process of forming the initial behavioral skills on the example of the system ‘eye-arm’ animat. The situation is the formation of the initial behavioral skills occurs, for example, when a child masters the management of their hands by understanding the relationship between baseline unidentified spots on the retina of his eye and the position of the real object. Since the body control skills are not ‘hardcoded’ initially in the brain and the spinal cord at the level of instincts, the human child, like most young of other mammals, it is necessary to develop these skills in search behavior mode. Exploratory behavior begins with trial and error and then its contribution is gradually reduced as the development of the body and its environment. Since the correct behavior patterns at this stage of development of the organism does not exist for now, then the only way to select the right skills is a positive reinforcement to achieve the objective. A key feature of the proposed algorithm is to fix in the imprinting mode, only the final action that led to success, and that is very important, led to the familiar imprinted situation clearly leads to success. Over time, the continuous chain is lengthened right action — maximum use of previous positive experiences and negative ‘forgotten’ and not used.
Thus there is the gradual replacement of the random search purposeful actions that observed in the real young. Thus, the algorithm is able to establish a correspondence between the laws of the world and the ‘inner feelings’, the internal state of the animat. The proposed animat model was used 2 types of neural networks: 1) neural network NET1 to the input current which is fed to the position of the brush arms and the target point, and the output of motor commands, directing ‘brush’ manipulator animat to the target point; 2) neural network NET2 is received at the input of target coordinates and the current coordinates of the ‘brush’ and the output value is formed likelihood that the animat already ‘know’ this situation, and he ‘knows’ how to react to it. With this architecture at the animat has to rely on the ‘experience’ of neural networks to recognize situations where the response from NET2 network of close to 1, and on the other hand, run a random search, when the experience of functioning in this area of the visual field in animat not (response NET2 close to 0).
-
Мультифрактальные и энтропийные статистики сейсмического шума на Камчатке в связи с сильнейшими землетрясениями
Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1507-1521В основу изучения свойств сейсмического шума на Камчатке положена идея, что шум является важным источником информации о процессах, предшествующих сильным землетрясениям. Рассматривается гипотеза, что увеличение сейсмической опасности сопровождается упрощением статистической структуры сейсмического шума и увеличением пространственных корреляций его свойств. В качестве статистик, характеризующих шум, использованы энтропия распределения квадратов вейвлет-коэффициентов, ширина носителя мультифрактального спектра сингулярности и индекс Донохо–Джонстона. Значения этих параметров отражают сложность: если случайный сигнал близок по своим свойствам к белому шуму, то энтропия максимальна, а остальные два параметра минимальны. Используемые статистики вычисляются для шести кластеров станций. Для каждого кластера станций вычисляются ежесуточные медианы свойств шума в последовательных временных окнах длиной 1 сутки, в результате чего образуется 18-мерный (3 свойства и 6 кластеров станций) временной ряд свойств. Для выделения общих свойств изменения параметров шума используется метод главных компонент, который применяется для каждого кластера станций, в результате чего информация сжимается до 6-мерного ежесуточного временного ряда главных компонент. Пространственные когерентности шума оцениваются как совокупность максимальных попарных квадратичных спектров когерентности между главным компонентами кластеров станций в скользящем временном окне длиной 365 суток. С помощью вычисления гистограмм распределения номеров кластеров, в которых достигаются минимальные и максимальные значения статистик шума в скользящем временном окне длиной 365 суток, оценивалась миграция областей сейсмической опасности в сопоставлении с сильными землетрясениями с магнитудой не менее 7.
Ключевые слова: сейсмический шум, вейвлеты, энтропия, мультифракталы, многомерный временной ряд, главные компоненты, когерентность.
Multifractal and entropy statistics of seismic noise in Kamchatka in connection with the strongest earthquakes
Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1507-1521The study of the properties of seismic noise in Kamchatka is based on the idea that noise is an important source of information about the processes preceding strong earthquakes. The hypothesis is considered that an increase in seismic hazard is accompanied by a simplification of the statistical structure of seismic noise and an increase in spatial correlations of its properties. The entropy of the distribution of squared wavelet coefficients, the width of the carrier of the multifractal singularity spectrum, and the Donoho – Johnstone index were used as statistics characterizing noise. The values of these parameters reflect the complexity: if a random signal is close in its properties to white noise, then the entropy is maximum, and the other two parameters are minimum. The statistics used are calculated for 6 station clusters. For each station cluster, daily median noise properties are calculated in successive 1-day time windows, resulting in an 18-dimensional (3 properties and 6 station clusters) time series of properties. To highlight the general properties of changes in noise parameters, a principal component method is used, which is applied for each cluster of stations, as a result of which the information is compressed into a 6-dimensional daily time series of principal components. Spatial noise coherences are estimated as a set of maximum pairwise quadratic coherence spectra between the principal components of station clusters in a sliding time window of 365 days. By calculating histograms of the distribution of cluster numbers in which the minimum and maximum values of noise statistics are achieved in a sliding time window of 365 days in length, the migration of seismic hazard areas was assessed in comparison with strong earthquakes with a magnitude of at least 7.
-
Исследование индивидуально-ориентированных механизмов динамики одновидовой популяции с помощью логических детерминированных клеточных автоматов
Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1279-1293Исследование логических детерминированных клеточноавтоматных моделей популяционной динамики позволяет выявлять детальные индивидуально-ориентированные механизмы функционирования экосистем. Выявление таких механизмов актуально в связи с проблемами, возникающими вследствие переэксплуатации природных ресурсов, загрязнения окружающей среды и изменения климата. Классические модели популяционной динамики имеют феноменологическую природу, так как являются «черными ящиками». Феноменологические модели принципиально затрудняют исследование локальных механизмов функционирования экосистем. Мы исследовали роль плодовитости и длительности восстановления ресурсов в механизмах популяционного роста, используя четыре модели экосистемы с одним видом. Эти модели являются логическими детерминированными клеточными автоматами и основаны на физической аксиоматике возбудимой среды с восстановлением. Было выявлено, что при увеличении времени восстановления ресурсов экосистемы происходит катастрофическая гибель популяции. Показано также, что большая плодовитость ускоряет исчезновения популяции. Исследованные механизмы важны для понимания механизмов устойчивого развития экосистем и сохранения биологического разнообразия. Обсуждаются перспективы представленного модельного подхода как метода прозрачного многоуровневого моделирования сложных систем.
Ключевые слова: популяционная динамика, клеточные автоматы, сложные системы, популяционные катастрофы, автоволны.
Investigation of individual-based mechanisms of single-species population dynamics by logical deterministic cellular automata
Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1279-1293Просмотров за год: 16. Цитирований: 3 (РИНЦ).Investigation of logical deterministic cellular automata models of population dynamics allows to reveal detailed individual-based mechanisms. The search for such mechanisms is important in connection with ecological problems caused by overexploitation of natural resources, environmental pollution and climate change. Classical models of population dynamics have the phenomenological nature, as they are “black boxes”. Phenomenological models fundamentally complicate research of detailed mechanisms of ecosystem functioning. We have investigated the role of fecundity and duration of resources regeneration in mechanisms of population growth using four models of ecosystem with one species. These models are logical deterministic cellular automata and are based on physical axiomatics of excitable medium with regeneration. We have modeled catastrophic death of population arising from increasing of resources regeneration duration. It has been shown that greater fecundity accelerates population extinction. The investigated mechanisms are important for understanding mechanisms of sustainability of ecosystems and biodiversity conservation. Prospects of the presented modeling approach as a method of transparent multilevel modeling of complex systems are discussed.
-
Моделирование динамики экономических систем с неопределенными параметрами
Компьютерные исследования и моделирование, 2018, т. 10, № 2, с. 261-276В статье проводится краткий анализ разработанных робастных методов управления, а также исследование практических аспектов их использования для управления экономическими системами с неопределенными параметрами. Рассматриваются особенности использования разработанных методов управления системами при наличии структурированной неопределенности применительно к задачам стабилизации цены на мировом рынке нефти, а также инфляции в макроэкономических системах. В первом случае с использованием специально разработанной модели ставится задача определения такого управления, которое обеспечивает минимальное отклонение цены нефти от желаемого уровня. Во втором случае решается задача формирования стабилизирующего управления, обеспечивающего в среднесрочной перспективе минимальное отклонение инфляции от желаемого уровня (на основе агрегированной макроэкономической модели среднесрочного развития США).
В результате вычислительных экспериментов найдены предельные уровни неопределенности параметров и законы обратной связи, при которых используемый в работе подход обеспечивает стабилизируемость реальных экономических систем. Проведенные расчеты показывают, что полученные оценки предельных уровней неопределенности параметров являются достаточно консервативными. С помощью метода статистических испытаний исследуется динамика цены на нефть, а также показателя инфляции в условиях найденных предельных уровней неопределенности параметров при использовании рассчитанных робастных законов управления, в случае наихудшего и наилучшего сценариев. Полученные результаты показывают, что рассчитанные робастные законы управления могут быть успешно применены и при большей степени неопределенности параметров исследуемых моделей, чем гарантируется при найденных предельных уровнях неопределенности.
Ключевые слова: экономические системы, стабилизация, робастные методы, неопределенные параметры, структурированная неопределенность.
Uncertainty factor in modeling dynamics of economic systems
Computer Research and Modeling, 2018, v. 10, no. 2, pp. 261-276Просмотров за год: 39.Analysis and practical aspects of implementing developed in the control theory robust control methods in studying economic systems is carried out. The main emphasis is placed on studying results obtained for dynamical systems with structured uncertainty. Practical aspects of implementing such results in control of economic systems on the basis of dynamical models with uncertain parameters and perturbations (stabilization of price on the oil market and inflation in macroeconomic systems) are discussed. With the help of specially constructed aggregate model of oil price dynamics studied the problem of finding control which provides minimal deviation of price from desired levels over middle range period. The second real problem considered in the article consists in determination of stabilizing control providing minimal deviation of inflation from desired levels (on the basis of constructed aggregate macroeconomic model of the USA over middle range period).
Upper levels of parameters uncertainty and control laws guaranteeing stabilizability of the real considered economic systems have been found using the robust method of control with structured uncertainty. At the same time we have come to the conclusion that received estimates of parameters uncertainty upper levels are conservative. Monte-Carlo experiments carried out for the article made it possible to analyze dynamics of oil price and inflation under received limit levels of models parameters uncertainty and under implementing found robust control laws for the worst and the best scenarios. Results of these experiments show that received robust control laws may be successfully used under less stringent uncertainty constraints than it is guaranteed by sufficient conditions of stabilization.
-
Использование сверточных нейронных сетей для прогнозирования скоростей транспортного потока на дорожном графе
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 359-367Краткосрочное прогнозирование потока трафика является однойиз основных задач моделирования транспортных систем, основное назначение которой — контроль дорожного движения, сообщение об авариях, избежание дорожных пробок за счет знания потока трафика и последующего планирования транспортировки. Существует два типа подходов для решения этой задачи: математическое моделирование трафика и модель с использованием количественных данных трафика. Тем не менее большинство пространственно-временных моделейст радают от высокой математической сложности и низкой эффективности. Искусственные нейронные сети, один из видных подходов второго типа, показывают обещающие результаты в моделировании динамики транспортнойс ети. В данной работе представлена архитектура нейронной сети, используемойдля прогнозирования скоростейт ранспортного потока на графе дорожной сети. Модель основана на объединении рекуррентнойней ронной сети и сверточнойней ронной сети на графе, где рекуррентная нейронная сеть используется для моделирования временных зависимостей, а сверточная нейронная сеть — для извлечения пространственных свойств из трафика. Для получения предсказанийна несколько шагов вперед используется архитектура encoder-decoder, позволяющая уменьшить накопление шума из-за неточных предсказаний. Для моделирования сложных зависимостей мы используем модель, состоящую из нескольких слоев. Нейронные сети с глубокойархитек туройсло жны для тренировки; для ускорения процесса тренировки мы используем skip-соединения между каждым слоем, так что каждыйслой учит только остаточную функцию по отношению к предыдущему слою. Полученная объединенная нейронная сеть тренировалась на необработанных данных с сенсоров транспортного потока из сети шоссе в США с разрешением в 5 минут. 3 метрики — средняя абсолютная ошибка, средняя относительная ошибка, среднеквадратическая ошибка — использовались для оценки качества предсказания. Было установлено, что по всем метрикам предложенная модель имеет более низкую погрешность предсказания по сравнению с ранее опубликованными моделями, такими как Vector Auto Regression, Long Short-Term Memory и Graph Convolution GRU.
Traffic flow speed prediction on transportation graph with convolutional neural networks
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 359-367Просмотров за год: 36.The short-term prediction of road traffic condition is one of the main tasks of transportation modelling. The main purpose of which are traffic control, reporting of accidents, avoiding traffic jams due to knowledge of traffic flow and subsequent transportation planning. A number of solutions exist — both model-driven and data driven had proven to be successful in capturing the dynamics of traffic flow. Nevertheless, most space-time models suffer from high mathematical complexity and low efficiency. Artificial Neural Networks, one of the prominent datadriven approaches, show promising performance in modelling the complexity of traffic flow. We present a neural network architecture for traffic flow prediction on a real-world road network graph. The model is based on the combination of a recurrent neural network and graph convolutional neural network. Where a recurrent neural network is used to model temporal dependencies, and a convolutional neural network is responsible for extracting spatial features from traffic. To make multiple few steps ahead predictions, the encoder-decoder architecture is used, which allows to reduce noise propagation due to inexact predictions. To model the complexity of traffic flow, we employ multilayered architecture. Deeper neural networks are more difficult to train. To speed up the training process, we use skip-connections between each layer, so that each layer teaches only the residual function with respect to the previous layer outputs. The resulting neural network was trained on raw data from traffic flow detectors from the US highway system with a resolution of 5 minutes. 3 metrics: mean absolute error, mean relative error, mean-square error were used to estimate the quality of the prediction. It was found that for all metrics the proposed model achieved lower prediction error than previously published models, such as Vector Auto Regression, LSTM and Graph Convolution GRU.
-
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
Ключевые слова: нейронечеткая модель, нечеткая нейронная сеть, нечетко-продукционное правило, формирование базы знаний, оценка состояния объекта.
Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492Просмотров за год: 12.This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.
-
Нейросетевая реконструкция треков частиц для внутреннего CGEM-детектораэк сперимента BESIII
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1361-1381Реконструкция траекторий заряженных частиц в трековых детекторах является ключевой проблемой анализа экспериментальных данных для физики высоких энергий и ядерной физики. Поток данных в современных экспериментах растет день ото дня, и традиционные методы трекинга уже не в состоянии соответствовать этим объемам данных по скорости обработки. Для решения этой проблемы нами были разработаны два нейросетевых алгоритма, использующих методы глубокого обучения, для локальной (каждый трек в отдельности) и глобальной (все треки в событии) реконструкции треков применительно к данным трекового GEM-детектора эксперимента BM@N ОИЯИ. Преимущество глубоких нейронных сетей обусловлено их способностью к обнаружению скрытых нелинейных зависимостей в данных и возможностью параллельного выполнения операций линейной алгебры, лежащих в их основе.
В данной статье приведено описание исследования по обобщению этих алгоритмов и их адаптации к применению для внутреннего поддетектора CGEM (BESIII ИФВЭ, Пекин). Нейросетевая модель RDGraphNet для глобальной реконструкции треков, разработанная на основе реверсного орграфа, успешно адаптирована. После обучения на модельных данных тестирование показало обнадеживающие результаты: для распознавания треков полнота (recall) составила 98% и точность (precision) — 86%. Однако адаптация «локальной» нейросетевой модели TrackNETv2 потребовала учета специфики цилиндрического детектора CGEM (BESIII), состоящего всего из трех детектирующих слоев, и разработки дополнительного нейроклассификатора для отсева ложных треков. Полученная программа TrackNETv2.1 протестирована в отладочном режиме. Значение полноты на первом этапе обработки составило 99%. После применения классификатора точность составила 77%, при незначительном снижении показателя полноты до 94%. Данные результаты предполагают дальнейшее совершенствование модели локального трекинга.
Ключевые слова: реконструкция треков, GEM-детекторы, глубокое обучение, сверточные нейронные сети, графовые нейросети.
Tracking on the BESIII CGEM inner detector using deep learning
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.
The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.
In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.
The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.
-
Модель формирования карты радиосреды для когнитивной системы связи на базе сотовой сети LTE
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 127-146Статья посвящена вторичному использованию спектра в телекоммуникационных сетях. Акцентируется внимание, что одним из решений данной проблемы является применение технологий когнитивного радио и динамического доступа к спектру, для успешного функционирования которых необходим большой объем информации, включающий параметры базовых станций и абонентов сети. Хранение и обработка информации должны осуществляться при помощи карты радиосреды, которая представляет собой пространственно-временную базу данных всех активностей в сети и позволяет определять доступные для использования в заданное время частоты. В работе представлена двухуровневая модель для формирования карты радиосреды системы сотовой связи LTE, в которой выделены локальный и глобальный уровни, описываемая следующими параметрами: набор частот, ослабление сигнала, карта распространения сигналов, шаг сетки, текущий временной отсчет. Ключевыми объектами модели являются базовая станция и абонентское устройство. К основным параметрам базовой станции отнесены: наименование, идентификатор, координаты ячейки, номер, диапазон, мощность излучения, номера подключенных абонентских устройств, выделенные им ресурсные блоки. Для абонентских устройств в качестве параметров используются: наименование, идентификатор, местоположение, текущие координаты ячейки устройства, идентификатор рабочей базовой станции, частотный диапазон, номера ресурсных блоков для связи со станцией, мощность излучения, статус передачи данных, список номеров ближайших станций, расписания перемещения и сеансов связи устройств. Представлен алгоритм для реализации модели с учетом сценариев перемещения и сеансов связи абонентских устройств. Приводится методика расчета карты радиосреды в точке координатной сетки с учетом потерь при распространении радиосигналов от излучающих устройств. Программная реализация модели выполнена с использованием пакета MatLab. Описаны подходы, позволяющие повысить быстродействие ее работы. При моделировании выбор параметров осуществлялся с учетом данных действующих систем связи и экономии вычислительных ресурсов. Продемонстрированы результаты исследований программной реализации алгоритма формирования карты радиосреды, подтверждающие корректность разработанной модели.
Model for building of the radio environment map for cognitive communication system based on LTE
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 127-146The paper is devoted to the secondary use of spectrum in telecommunication networks. It is emphasized that one of the solutions to this problem is the use of cognitive radio technologies and dynamic spectrum access for the successful functioning of which a large amount of information is required, including the parameters of base stations and network subscribers. Storage and processing of information should be carried out using a radio environment map, which is a spatio-temporal database of all activity in the network and allows you to determine the frequencies available for use at a given time. The paper presents a two-level model for forming a map of the radio environment of a cellular communication system LTE, in which the local and global levels are highlighted, which is described by the following parameters: a set of frequencies, signal attenuation, signal propagation map, grid step, current time count. The key objects of the model are the base station and the subscriber unit. The main parameters of the base station include: name, identifier, cell coordinates, range number, radiation power, numbers of connected subscriber devices, dedicated resource blocks. For subscriber devices, the following parameters are used: name, identifier, location, current coordinates of the device cell, base station identifier, frequency range, numbers of resource blocks for communication with the station, radiation power, data transmission status, list of numbers of the nearest stations, schedules movement and communication sessions of devices. An algorithm for the implementation of the model is presented, taking into account the scenarios of movement and communication sessions of subscriber devices. A method for calculating a map of the radio environment at a point on a coordinate grid, taking into account losses during the propagation of radio signals from emitting devices, is presented. The software implementation of the model is performed using the MatLab package. The approaches are described that allow to increase the speed of its work. In the simulation, the choice of parameters was carried out taking into account the data of the existing communication systems and the economy of computing resources. The experimental results of the algorithm for the formation of a radio environment map are demonstrated, confirming the correctness of the developed model.
-
Исследование влияния антиангиогенной монотерапии на прогрессию гетерогенной опухоли с помощью методов математического моделирования
Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 487-501В последнее десятилетие в онкологии наряду с классическими цитотоксическими агентами при химиотерапии стали активно использоваться антиангиогенные препараты. Они направлены не на убийство злокачественных клеток, а на блокирование процесса ангиогенеза — роста новых сосудов в опухолевом микроокружении. Вещества, стимулирующие ангиогенез, в частности фактор роста эндотелия сосудов, активно вырабатываются опухолевыми клетками, находящимися в состоянии метаболического стресса. Считается, что блокирование опухолевой неоваскуляризации должно привести к нехватке питательных веществ в опухоли, а значит, и к остановке или по крайней мере к существенному замедлению ее роста. Клиническая практика применения первого антиангиогенного препарата, бевацизумаба, показала, что в ряде случаев такая терапия не влияет на скорость роста опухоли, тогда как для других типов опухолей антиангиогенная терапия обладает высоким противоопухолевым действием. Однако было показано, что при успешном замедлении роста опухоли терапия бевацизумабом может вызывать направленную прогрессию опухоли к более инвазивному, а значит, более летальному типу. Эти данные требуют теоретического анализа и определения ключевых факторов, приводящих к такой опухолевой прогрессии, которая в литературе ассоциируется с эпителиально-мезенхимальным переходом. Для решения этой задачи была разработана пространственно-распределенная математическая модель роста и антиангиогенной терапии гетерогенной опухоли, состоящей из двух субпопуляций злокачественных клеток. Одна из субпопуляций обладает свойствами, присущими эпителиальному фенотипу, — малой подвижностью и высокой скоростью пролиферации, другая соответствует мезенхимальному фенотипу и обладает высокой подвижностью и медленной скоростью деления. Проведено исследование конкурентной борьбы между этими субпопуляциями в гетерогенной опухоли как в случае роста опухоли без терапии, так и в случае монотерапии бевацизумабом. Показано, что постоянное использование антиангиогенного препарата приводит к увеличению области в пространстве параметров, где происходит доминирование мезенхимального фенотипа: в определенном диапазоне параметров в отсутствие терапии доминирует эпителиальный фенотип, а при терапии бевацизумабом начинает доминировать мезенхимальный фенотип. Данный результат является теоретическим обоснованием наблюдаемой в клинической практике направленной прогрессии опухоли к более инвазивному типу при проведении антиангиогенной терапии.
Ключевые слова: математическое моделирование, прогрессия опухоли, антиангиогенная терапия, бевацизумаб.
Mathematical investigation of antiangiogenic monotherapy effect on heterogeneous tumor progression
Computer Research and Modeling, 2017, v. 9, no. 3, pp. 487-501Просмотров за год: 10. Цитирований: 2 (РИНЦ).In the last decade along with classical cytotoxic agents, antiangiogenic drugs have been actively used in cancer chemotherapy. They are not aimed at killing malignant cells, but at blocking the process of angiogenesis, i.e., the growth of new vessels in the tumor and its surrounding tissues. Agents that stimulate angiogenesis, in particular, vascular endothelial growth factor, are actively produced by tumor cells in the state of metabolic stress. It is believed that blocking of tumor neovascularization should lead to a shortage of nutrients flow to the tumor, and thus can stop, or at least significantly slow down its growth. Clinical practice on the use of first antiangiogenic drug bevacizumab has shown that in some cases such therapy does not influence the growth rate of the tumor, whereas for other types of malignant neoplasms antiangiogenic therapy has a high antitumor effect. However, it has been shown that along with successful slowing of tumor growth, therapy with bevacizumab can induce directed tumor progression to a more invasive, and therefore more lethal, type. These data require theoretical analysis and rationale for the evolutionary factors that lead to the observation of epithelial-mesenchymal transition. For this purpose we have developed a spatially distributed mathematical model of growth and antiangiogenic therapy of heterogeneous tumor consisting of two subpopulations of malignant cells. One of subpopulations possesses inherent characteristics of epithelial phenotype, i.e., low motility and high proliferation rate, the other one corresponds to mesenchymal phenotype having high motility and low proliferation rate. We have performed the investigation of competition between these subpopulations of heterogeneous tumor in the cases of tumor growth without therapy and under bevacizumab monotherapy. It is shown that constant use of antiangiogenic drug leads to an increase of the region in parameter space, where the dominance of mesenchymal phenotype takes place, i.e., within a certain range of parameters in the absence of therapy epithelial phenotype is dominant but during bevacizumab administration mesenchymal phenotype begins to dominate. This result provides a theoretical basis of the clinically observed directed tumor progression to more invasive type under antiangiogenic therapy.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"