Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.
Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.
В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.
Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.
Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.
Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.
Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.
Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.
Ключевые слова: система «паразит – хозяин», коронавирусная инфекция, эпидемический процесс, гетерогенная популяция.
Mathematical model of the parasite – host system with distributed immunity retention time
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.
Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.
In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.
For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.
For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.
Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.
It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.
This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.
-
Об одной модели смеси распределений вероятностей в радиотехнических измерениях
Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 563-568В данной работе представлена модель смеси распределений вероятностей сигнала и шума. Как правило, при анализе данных в условиях неопределенности приходится использовать непараметрические критерии. Однако при анализе нестационарных данных при наличии неопределенности по виду закона распределения и его параметрам они могут оказаться малоэффективными. Рассматриваемая модель подразумевает реализацию случая априорной непараметрической неопределенности при обработке сигнала в условиях, когда возможно разделение сигнала и шума как компонентов, относящихся к разным генеральным совокупностям.
On one particular model of a mixture of the probability distributions in the radio measurements
Computer Research and Modeling, 2012, v. 4, no. 3, pp. 563-568Просмотров за год: 3. Цитирований: 7 (РИНЦ).This paper presents a model mixture of probability distributions of signal and noise. Typically, when analyzing the data under conditions of uncertainty it is necessary to use nonparametric tests. However, such an analysis of nonstationary data in the presence of uncertainty on the mean of the distribution and its parameters may be ineffective. The model involves the implementation of a case of a priori non-parametric uncertainty in the processing of the signal at a time when the separation of signal and noise are related to different general population, is feasible.
-
Методы прогнозирования и модели распространения заболеваний
Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.
Ключевые слова: прогнозирование заболеваемости, поточечные оценки, регрессионные модели, АРПСС, скрытые марковские модели, метод аналогий, экспоненциальное сглаживание, SIR, модель Барояна–Рвачева, клеточные автоматы, популяционные модели, агентные модели.
Forecasting methods and models of disease spread
Computer Research and Modeling, 2013, v. 5, no. 5, pp. 863-882Просмотров за год: 71. Цитирований: 19 (РИНЦ).The number of papers addressing the forecasting of the infectious disease morbidity is rapidly growing due to accumulation of available statistical data. This article surveys the major approaches for the shortterm and the long-term morbidity forecasting. Their limitations and the practical application possibilities are pointed out. The paper presents the conventional time series analysis methods — regression and autoregressive models; machine learning-based approaches — Bayesian networks and artificial neural networks; case-based reasoning; filtration-based techniques. The most known mathematical models of infectious diseases are mentioned: classical equation-based models (deterministic and stochastic), modern simulation models (network and agent-based).
-
Математическое моделирование динамики численности разновозрастных занятых в экономике региона
Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 441-454В статье рассматривается нелинейная модель динамики численности разновозрастных занятых в экономике региона, построенная по принципам базового моделирования в эконофизике. Продемонстрированы сложные режимы динамики модели, накладывающие фундаментальные ограничения на средне- и долгосрочный прогноз численности занятых в регионе. По аналогии с биофизическим подходом предложена классификация социальных взаимодействий разновозрастных работников. Приведен модельный анализ оценки уровня занятости среди возрастных групп населения. Верификация модели проведена на статистических данных Еврейской автономной области.
Ключевые слова: нелинейная динамика, эконофизика, биофизика, когорта, численность занятого населения, уровень занятости, регион.
Mathematical modeling of the population dynamics of different age-group workers in the regional economy
Computer Research and Modeling, 2014, v. 6, no. 3, pp. 441-454The article deals with the nonlinear model of population dynamics of different ages workers in the regional economy. The model is built on the principles underlying modeling in econophysics. The authors demonstrate the complex dynamics of the model regimes that impose fundamental limits on medium- and long-term forecast of employment in a region. By analogy with the biophysical approach the authors propose a classification of social interactions of the different age-group workers. The model analysis is given for the level of employment among age groups. The verification of the model performs on the statistical data of the Jewish Autonomous Region.
Keywords: nonlinear dynamics, econophysics, biophysics, age group, employed population, employment, region.Просмотров за год: 4. Цитирований: 15 (РИНЦ). -
Статистическое моделирование производственных процессов гибкой втоматизированной сборки в среде объектно-ориентированного программирования
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 289-300Разработана программа, которая позволяет имитировать работу конвейера гибкого автоматизированного цеха сборки персональных компьютеров (ПК), с применением современного объектно-ориентированного языка программирования C#. Приведена диаграмма классов имитационной модели ГАЦ сборки ПК в режиме массового производства. Приводится анализ результатов моделирования.
Ключевые слова: имитационная модель гибкого автоматизированного цеха, статистическое моделирование производственных процессов.
Statistical modeling of the production processes оf the flexible automated assembly in the object-oriented programming environment
Computer Research and Modeling, 2015, v. 7, no. 2, pp. 289-300Просмотров за год: 2. Цитирований: 1 (РИНЦ).Using modern object-oriented programming language C# a program for simulation of operation of the conveyor for flexible automated assembly of PC was developed. Class diagram of the simulation model of a flexible automated assembly line for PC assembly in mass production mode is presented. Simulation results analysis is presented.
-
О некоторых свойствах коротковолновой статистики временных рядов FOREX
Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 657-669Финансовая математика является одним из наиболее естественных приложений для статистического анализа временных рядов. Действительно, финансовые временные ряды являются порождением одновременной деятельности большого числа различных экономических агентов, что дает основания ожидать, что к ним могут быть применимы методы статистической физики и теории случайных процессов.
В настоящей работе проведен статистический анализ временных рядов для пар валют на рынке FOREX. Особый интерес представляет сравнение поведения временного ряда как функции, с одной стороны, физического времени и, с другой стороны, условного торгового времени, измеряемого в числе элементарных актов изменения цены (тиков). Экспериментально наблюдаемая статистика рассмотренных временных рядов (пар валют «евро–доллар» для первых половин 2007 и 2009 годов и «британский фунт–доллар» для 2007 года) радикально отличается в зависимости от выбора способа измерения времени. Так, при измерении времени в единицах тиков распределение приращений цены может быть хорошо описано нормальным распределением уже на масштабе порядка десяти тиков. При этом при измерении приращений цены как функции реального физического времени распределение приращений продолжает радикально отличаться от нормального, вплоть до масштабов порядка минут и даже часов.
Для объяснения этого явления нами исследованы статистические свойства элементарных приращений по цене и по времени. В частности, показано, что распределение времени между тиками для всех трех рассмотренных временных рядов имеет длинные (1-2 порядка по времени) степенные хвосты с экспоненциальным обрезанием на больших временах. Получены приближенные выражения для распределений времен ожидания для всех трех рассмотренных случаев. Другие статистические характеристики временного ряда (распределение элементарных изменений цены, парные корреляционные функции для приращений цены и для времен ожидания) демонстрируют достаточно простое поведение. Таким образом, именно аномально широкое распределение времен ожидания играет наиболее важную роль в наблюдаемом отклонении распределения приращений от нормального. В связи с этим результатом мы обсуждаем возможность применения модели случайного процесса с непрерывным временем (continuous time random walk, CTRW) для описания временных рядов FOREX.
Ключевые слова: временной ряд FOREX, распределение времен ожидания, распределение вероятностей с тяжелыми хвостами, корреляционный анализ временных рядов, случайное блуждание в непрерывном времени.
On some properties of short-wave statistics of FOREX time series
Computer Research and Modeling, 2017, v. 9, no. 4, pp. 657-669Просмотров за год: 10.Financial mathematics is one of the most natural applications for the statistical analysis of time series. Financial time series reflect simultaneous activity of a large number of different economic agents. Consequently, one expects that methods of statistical physics and the theory of random processes can be applied to them.
In this paper, we provide a statistical analysis of time series of the FOREX currency market. Of particular interest is the comparison of the time series behavior depending on the way time is measured: physical time versus trading time measured in the number of elementary price changes (ticks). The experimentally observed statistics of the time series under consideration (euro–dollar for the first half of 2007 and for 2009 and British pound – dollar for 2007) radically differs depending on the choice of the method of time measurement. When measuring time in ticks, the distribution of price increments can be well described by the normal distribution already on a scale of the order of ten ticks. At the same time, when price increments are measured in real physical time, the distribution of increments continues to differ radically from the normal up to scales of the order of minutes and even hours.
To explain this phenomenon, we investigate the statistical properties of elementary increments in price and time. In particular, we show that the distribution of time between ticks for all three time series has a long (1-2 orders of magnitude) power-law tails with exponential cutoff at large times. We obtained approximate expressions for the distributions of waiting times for all three cases. Other statistical characteristics of the time series (the distribution of elementary price changes, pair correlation functions for price increments and for waiting times) demonstrate fairly simple behavior. Thus, it is the anomalously wide distribution of the waiting times that plays the most important role in the deviation of the distribution of increments from the normal. As a result, we discuss the possibility of applying a continuous time random walk (CTRW) model to describe the FOREX time series.
-
Некоторые особенности взаимосвязи термодинамических характеристик земной поверхности с потоками водяного пара и диоксида углерода на сплошной свежей вырубке
Компьютерные исследования и моделирование, 2017, т. 9, № 6, с. 965-980В статье рассматриваются некоторые особенности временной изменчивости и взаимосвязь эксергии коротковолнового и длинноволнового излучения с потоками тепла, водяного пара (Н2О) и диоксида углерода (СО2) на сплошной свежей вырубке в смешанном хвойно-мелколиственном лесу в Тверской области. На основе проведенного сравнения коэффициентов радиационной эффективности и эффективности эксергии, введенных Ю. М. Свирежевым, было показано, что в течение первых восьми месяцев после проведения сплошной рубки лесная экосистема функционирует как «тепловая машина», то есть на вырубке доминируют процессы диссипации энергии над продукционными процессами. Для проверки справедливости полученного вывода был выполнен статистический анализ временной изменчивости метеорологических рядов наблюдений и данных по среднесуточным значениям потоков явного тепла, затрат тепла на испарение и потоков СО2 с применением тригонометрических многочленов, который подтвердил полученный ранее вывод. Для среднесуточных значений потоков СО2, валовой первичной продуктивности растительного покрова на вырубке, а также потоков явного тепла удалось построить статистические модели, линейно зависящие от эксергии коротковолнового и длинноволнового излучения. Анализ этих зависимостей также подтвердил вывод, полученный на основе рассмотрения временной изменчивости коэффициентов радиационной эффективности и эффективности эксергии. Используя разбиение временных рядов на отдельные временные интервалы «весна–лето» и «лето–осень», удалось выявить, что в процессе зарастания вырубки травянистой растительностью в летние месяцы связь между этими параметрами и величиной эксергии усиливается. Анализ линейной связи временных рядов затрат тепла на испарение и эксергии показал ее статистическую незначимость. В свою очередь, линейная связь между затратами тепла на испарение и температурой оказалась статистически значимой. Температура выступала в роли ключевого фактора, повышающего точность модели, а эксергия оказывалась несущественным фактором. Это указывает на то, что межсуточная временная изменчивость испарения активно зарастающей вырубки определялась главным образом температурой.
Ключевые слова: сплошная вырубка, термодинамические характеристики, эксергия, коротковолновая радиация, длинноволновое излучение, временные ряды, потоки тепла, водяного пара и диоксида углерода.
Some relationships between thermodynamic characteristics and water vapor and carbon dioxide fluxes in a recently clear-cut area
Computer Research and Modeling, 2017, v. 9, no. 6, pp. 965-980Просмотров за год: 15. Цитирований: 1 (РИНЦ).The temporal variability of exergy of short-wave and long-wave radiation and its relationships with sensible heat, water vapor (H2O) and carbon dioxide (CO2) fluxes on a recently clear-cut area in a mixed coniferous and small-leaved forest in the Tver region is discussed. On the basis of the analysis of radiation and exergy efficiency coefficients suggested by Yu.M. Svirezhev it was shown that during the first eight months after clearcutting the forest ecosystem functions as a "heat engine" i.e. the processes of energy dissipation dominated over processes of biomass production. To validate the findings the statistical analysis of temporary variability of meteorological parameters, as well as, daily fluxes of sensible heat, H2O and CO2 was provided using the trigonometrical polynomials. The statistical models that are linearly depended on an exergy of short-wave and long-wave radiation were obtained for mean daily values of CO2 fluxes, gross primary production of regenerated vegetation and sensible heat fluxes. The analysis of these dependences is also confirmed the results obtained from processing the radiation and exergy efficiency coefficients. The splitting the time series into separate time intervals, e.g. “spring–summer” and “summer–autumn”, allowed revealing that the statistically significant relationships between atmospheric fluxes and exergy were amplified in summer months as the clear-cut area was overgrown by grassy and young woody vegetation. The analysis of linear relationships between time-series of latent heat fluxes and exergy showed their statistical insignificance. The linear relationships between latent heat fluxes and temperature were in turn statistically significant. The air temperature was a key factor improving the accuracy of the models, whereas effect of exergy was insignificant. The results indicated that at the time of active vegetation regeneration within the clear-cut area the seasonal variability of surface evaporation is mainly governed by temperature variation.
-
Нейронечеткая модель формирования нечетких правил для оценки состояния объектов в условиях неопределенности
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 477-492В данной статье решается задача построения нейронечеткой модели формирования нечетких правил и их использования для оценки состояния объектов в условиях неопределенности. Традиционные методы математической статистики или имитационного моделирования не позволяют строить адекватные модели объектов в указанных условиях. Поэтому в настоящее время решение многих задач основано на использовании технологий интеллектуального моделирования с применением методов нечеткой логики. Традиционный подход к построению нечетких систем связан с необходимостью привлечения эксперта для формулирования нечетких правил и задания используемых в них функций принадлежности. Для устранения этого недостатка актуальна автоматизация формирования нечетких правил на основе методов и алгоритмов машинного обучения. Одним из подходов к решению данной задачи является построение нечеткой нейронной сети и обучение ее на данных, характеризующих исследуемый объект. Реализация этого подхода потребовала выбора вида нечетких правил с учетом особенностей обрабатываемых данных. Кроме того, потребовалась разработка алгоритма логического вывода на правилах выбранного вида. Этапы алгоритма определяют число слоев в структуре нечеткой нейронной сети и их функциональность. Разработан алгоритм обучения нечеткой нейронной сети. После ее обучения производится формирование системы нечетко-продукционных правил. На базе разработанного математического обеспечения реализован программный комплекс. На его основе проведены исследования по оценке классифицирующей способности формируемых нечетких правил на примере анализа данных из UCI Machine Learning Repository. Результаты исследований показали, что классифицирующая способность сформированных нечетких правил не уступает по точности другим методам классификации. Кроме того, алгоритм логического вывода на нечетких правилах позволяет успешно производить классификацию при отсутствии части исходных данных. С целью апробации произведено формирование нечетких правил для решения задачи по оценке состояния водоводов в нефтяной отрасли. На основе исходных данных по 303 водоводам сформирована база из 342 нечетких правил. Их практическая апробация показала высокую эффективность в решении поставленной задачи.
Ключевые слова: нейронечеткая модель, нечеткая нейронная сеть, нечетко-продукционное правило, формирование базы знаний, оценка состояния объекта.
Neuro-fuzzy model of fuzzy rules formation for objects state evaluation in conditions of uncertainty
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 477-492Просмотров за год: 12.This article solves the problem of constructing a neuro-fuzzy model of fuzzy rules formation and using them for objects state evaluation in conditions of uncertainty. Traditional mathematical statistics or simulation modeling methods do not allow building adequate models of objects in the specified conditions. Therefore, at present, the solution of many problems is based on the use of intelligent modeling technologies applying fuzzy logic methods. The traditional approach of fuzzy systems construction is associated with an expert attraction need to formulate fuzzy rules and specify the membership functions used in them. To eliminate this drawback, the automation of fuzzy rules formation, based on the machine learning methods and algorithms, is relevant. One of the approaches to solve this problem is to build a fuzzy neural network and train it on the data characterizing the object under study. This approach implementation required fuzzy rules type choice, taking into account the processed data specificity. In addition, it required logical inference algorithm development on the rules of the selected type. The algorithm steps determine the number and functionality of layers in the fuzzy neural network structure. The fuzzy neural network training algorithm developed. After network training the formation fuzzyproduction rules system is carried out. Based on developed mathematical tool, a software package has been implemented. On its basis, studies to assess the classifying ability of the fuzzy rules being formed have been conducted using the data analysis example from the UCI Machine Learning Repository. The research results showed that the formed fuzzy rules classifying ability is not inferior in accuracy to other classification methods. In addition, the logic inference algorithm on fuzzy rules allows successful classification in the absence of a part of the initial data. In order to test, to solve the problem of assessing oil industry water lines state fuzzy rules were generated. Based on the 303 water lines initial data, the base of 342 fuzzy rules was formed. Their practical approbation has shown high efficiency in solving the problem.
-
Моделирование процессов миграции населения: методы и инструменты (обзор)
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.
Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.
В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.
Ключевые слова: миграция, миграционные процессы, модели миграции, методы, регрессионные модели, клеточные автоматы, агент-ориентированные модели, балансовые модели, динамические модели.
Migration processes modelling: methods and tools (overview)
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.
Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.
The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.
-
Анализ прогностических свойств тремора земной поверхности с помощью разложения Хуанга
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 939-958Предлагается метод анализа тремора земной поверхности, измеряемого средствами космической геодезии с целью выделения прогностических эффектов активизации сейсмичности. Метод иллюстрируется на примере совместного анализа совокупности синхронных временных рядов ежесуточных вертикальных смещений земной поверхности на Японских островах для интервала времени 2009–2023 гг. Анализ основан на разбиении исходных данных (1047 временных рядов) на блоки (кластеры станций) и последовательном применении метода главных компонент. Разбиение сети станций на кластеры производится методом k-средних из критерия максимума псевдо-статистики. Для Японии оптимальное число кластеров было выбрано равным 15. К временным рядам главных компонент от блоков станций применяется метод разложения Хуанга на последовательность независимых эмпирических мод колебаний (Empirical Mode Decomposition, EMD). Для обеспечения устойчивости оценок волновых форм EMD-разложения производилось усреднение 1000 независимых аддитивных реализаций белого шума ограниченной амплитуды. С помощью разложения Холецкого ковариационной матрицы волновых форм первых трех EMD-компонент в скользящем временном окне определены индикаторы аномального поведения тремора. Путем вычисления корреляционной функции между средними индикаторами аномального поведения и выде- лившейся сейсмической энергии в окрестности Японских островов установлено, что всплески меры ано- мального поведения тремора предшествуют выбросам сейсмической энергии. Целью статьи является про- яснение распространенных гипотез о том, что движения земной коры, регистрируемые средствами космической геодезии, могут содержать прогностическую информацию. То, что смещения, регистрируемые геодезическими методами, реагируют на последствия землетрясений, широко известно и многократно демонстрировалось. Но выделение геодезических эффектов, предвещающих сейсмические события, является значительно более сложной задачей. В нашей статье мы предлагаем один из методов обнаружения прогностических эффектов в данных космической геодезии.
Ключевые слова: тремор земной поверхности, кластерный анализ, метод главных компонент, разложение Хуанга, мера аномального поведения временных рядов, корреляционная функция.
Analysis of predictive properties of ground tremor using Huang decomposition
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 939-958A method is proposed for analyzing the tremor of the earth’s surface, measured by means of space geodesy, in order to highlight the prognostic effects of seismicity activation. The method is illustrated by the example of a joint analysis of a set of synchronous time series of daily vertical displacements of the earth’s surface on the Japanese Islands for the time interval 2009–2023. The analysis is based on dividing the source data (1047 time series) into blocks (clusters of stations) and sequentially applying the principal component method. The station network is divided into clusters using the K-means method from the maximum pseudo-F-statistics criterion, and for Japan the optimal number of clusters was chosen to be 15. The Huang decomposition method into a sequence of independent empirical oscillation modes (EMD — Empirical Mode Decomposition) is applied to the time series of principal components from station blocks. To provide the stability of estimates of the waveforms of the EMD decomposition, averaging of 1000 independent additive realizations of white noise of limited amplitude was performed. Using the Cholesky decomposition of the covariance matrix of the waveforms of the first three EMD components in a sliding time window, indicators of abnormal tremor behavior were determined. By calculating the correlation function between the average indicators of anomalous behavior and the released seismic energy in the vicinity of the Japanese Islands, it was established that bursts in the measure of anomalous tremor behavior precede emissions of seismic energy. The purpose of the article is to clarify common hypotheses that movements of the earth’s crust recorded by space geodesy may contain predictive information. That displacements recorded by geodetic methods respond to the effects of earthquakes is widely known and has been demonstrated many times. But isolating geodetic effects that predict seismic events is much more challenging. In our paper, we propose one method for detecting predictive effects in space geodesy data.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"