Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Центрально-симметричные стационарные состояния в одной модели электродиффузии
Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 99-104Изучается математическая модель электродиффузии в центрально-симметричном случае. Эта модель в частности описывает перенос ионов Li+ в некоторых электрохимических источниках тока. Нами показано, что при заданных на внешней границе значениях концентрации ионов и электрического потенциала в модели существует единственное стационарное решение, которое является устойчивым аттрактором нестационарных решений при различных распределениях начальных значений.
Centrally symmetric steady states in a model of electrodiffusion
Computer Research and Modeling, 2012, v. 4, no. 1, pp. 99-104Просмотров за год: 1.We study the centrally symmetric mathematical model of electrodiffusion. This model describes in particular the transport of the Li+ ions in certain electrochemical current sources. We demonstrate that the steady state solution of the considered model exists and is unique if the boundary values of the ion concentration and electric potential are given. This solution also proves to be the stable attractor of the time-dependent solutions with different initial value distributions.
-
Обоснование связи модели Бэкмана с вырождающимися функциями затрат с моделью стабильной динамики
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 335-342С 50-х годов XX века транспортное моделирование крупных мегаполисов стало усиленно развиваться. Появились первые модели равновесного распределения потоков по путям. Наиболее популярной (и использующейся до сих пор) моделью была модель Бэкмана и др. 1955 г. В основу этой модели положены два принципа Вардропа. На современном теоретико-игровом языке можно кратко описать суть модели как поиск равновесия Нэша в популяционной игре загрузки, в которой потери игроков (водителей) рассчитываются исходя из выбранного пути и загрузках на этом пути, при фиксированных корреспонденциях. Загрузки (затраты) на пути рассчитываются как сумма затрат на различных участках дороги (ребрах графа транспортной сети). Затраты на ребре (время проезда по ребру) определяется величиной потока автомобилей на этом ребре. Поток на ребре, в свою очередь, определяется суммой потоков по всем путям, проходящим через заданное ребро. Таким образом, затраты на проезд по пути определяются не только выбором пути, но и тем, какие пути выбрали остальные водители. Таким образом, мы находимся в стандартной теоретико-игровой постановке. Специфика формирования функций затрат позволяет сводить поиск равновесия к решению задачи оптимизации (игра потенциальная). Эта задача оптимизации будет выпуклой, если функции затрат монотонно неубывающие. Собственно, различные предположения о функциях затрат формируют различные модели. Наиболее популярной моделью является модель с функцией затрат BPR. Такие функции используются при расчетах реальных городов повсеместно. Однако в начале XXI века Ю. Е. Нестеровым и А. де Пальмой было показано, что модели типа Бэкмана имеют серьезные недостатки. Эти недостатки можно исправить, используя модель, которую авторы назвали моделью стабильной динамики. Поиск равновесия в такой модели также сводится к задаче оптимизации. Точнее, даже задаче линейного программирования. В 2013 г. А. В. Гасниковым было обнаружено, что модель стабильной ди- намики может быть получена предельным переходом, связанным с поведением функции затрат, из модели Бэкмана. Однако обоснование упомянутого предельного перехода было сделано в нескольких важных (для практики), но все- таки частных случаях. В общем случае вопрос о возможности такого предельного перехода, насколько нам известно, остается открытым. Данная работа закрывает данный зазор. В статье в общем случае приводится обоснование возможности отмеченного предельного перехода (когда функция затрат на проезд по ребру как функция потока по ребру вырождается в функцию, равную постоянным затратам до достижения пропускной способности, и равна плюс бесконечности, при превышении пропускной способности).
Ключевые слова: модель равновесного распределения потоков по путям, модель Бэкмана, модель стабильной динамики.
Proof of the connection between the Backman model with degenerate cost functions and the model of stable dynamics
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 335-342Since 1950s the field of city transport modelling has progressed rapidly. The first equilibrium distribution models of traffic flow appeared. The most popular model (which is still being widely used) was the Beckmann model, based on the two Wardrop principles. The core of the model could be briefly described as the search for the Nash equilibrium in a population demand game, in which losses of agents (drivers) are calculated based on the chosen path and demands of this path with correspondences being fixed. The demands (costs) of a path are calculated as the sum of the demands of different path segments (graph edges), that are included in the path. The costs of an edge (edge travel time) are determined by the amount of traffic on this edge (more traffic means larger travel time). The flow on a graph edge is determined by the sum of flows over all paths passing through the given edge. Thus, the cost of traveling along a path is determined not only by the choice of the path, but also by the paths other drivers have chosen. Thus, it is a standard game theory task. The way cost functions are constructed allows us to narrow the search for equilibrium to solving an optimization problem (game is potential in this case). If the cost functions are monotone and non-decreasing, the optimization problem is convex. Actually, different assumptions about the cost functions form different models. The most popular model is based on the BPR cost function. Such functions are massively used in calculations of real cities. However, in the beginning of the XXI century, Yu. E. Nesterov and A. de Palma showed that Beckmann-type models have serious weak points. Those could be fixed using the stable dynamics model, as it was called by the authors. The search for equilibrium here could be also reduced to an optimization problem, moreover, the problem of linear programming. In 2013, A.V.Gasnikov discovered that the stable dynamics model can be obtained by a passage to the limit in the Beckmann model. However, it was made only for several practically important, but still special cases. Generally, the question if this passage to the limit is possible remains open. In this paper, we provide the justification of the possibility of the above-mentioned passage to the limit in the general case, when the cost function for traveling along the edge as a function of the flow along the edge degenerates into a function equal to fixed costs until the capacity is reached and it is equal to plus infinity when the capacity is exceeded.
-
Анализ стохастических аттракторов квадратичной дискретной популяционной модели с запаздыванием
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 145-157В работе рассматривается квадратичная дискретная модель популяционной динамики с запаздыванием под воздействием случайных возмущений. Анализ стохастических аттракторов модели проводится с помощью методов прямого численного моделирования и техники функций стохастической чувствительности. Показана деформация вероятностных распределений случайных состояний вокруг устойчивых равновесий и циклов при изменении параметров. Продемонстрировано явление индуцированных шумом переходов в зоне дискретных циклов.
Ключевые слова: квадратичная дискретная популяционная модель с запаздыванием, функция стохастической чувствительности.
Analysis of stochastic attractors for time-delayed quadratic discrete model of population dynamics
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 145-157Просмотров за год: 3. Цитирований: 1 (РИНЦ).We consider a time-delayed quadratic discrete model of population dynamics under the influence of random perturbations. Analysis of stochastic attractors of the model is performed using the methods of direct numerical simulation and the stochastic sensitivity function technique. A deformation of the probability distribution of random states around the stable equilibria and cycles is studied parametrically. The phenomenon of noise-induced transitions in the zone of discrete cycles is demonstrated.
-
О динамике косимметричных систем хищников и жертв
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 799-813Для изучения нелинейных эффектов взаимодействия биологических видов развивается численно-аналитический подход, основанный на теории косимметрии, объясняющей явление возникновения непрерывных семейств решений дифференциальных уравнений, когда каждое решение может быть реализовано из соответствующего бассейна начальных данных. В задачах математической экологии возникновение косимметрии обычно связано с выполнением ряда соотношений между параметрами системы. При нарушении этих соотношений происходит разрушение семейств, когда вместо континуума решений возникает конечное число изолированных решений, а процесс установления может занимать большое время. При этом динамический процесс происходит в окрестности семейства, исчезнувшего в результате разрушения косимметрии.
Рассматривается модель пространственно-временной конкуренции хищников и жертв с учетом направленной миграции, функционального отклика Холлинга типа II и нелинейной функции роста жертв, допускающей эффект Олли. Найдены условия на параметры системы, при которых существует линейная по плотностям популяций косимметрия. Показано, что косимметричность не зависит от вида функции ресурса в случае неоднородного ареала. Для расчета стационарных решений и колебательных режимов и случая пространственной неоднородности применяется вычислительный эксперимент в среде MATLAB.
Рассмотрены важные случаи взаимодействия трех популяций (жертва и два хищника, две жертвы и хищник). В случае однородного ареала исследованы возникновение семейств стационарных распределений и ответвление предельных циклов от теряющих устойчивость равновесий семейства. Для системы двух жертв и хищника обнаружены области параметров, при которых реализуются три семейства устойчивых решений: сосуществование двух жертв без хищника, стационарные и колебательные распределения трех сосуществующих видов. В численном эксперименте проанализировано разрушение косимметрии и установлено долгое установление, приводящее к решениям с вытеснением одной из жертв или вымиранием хищника.
Ключевые слова: математическая экология, теория косимметрии, сосуществование конкурентов, хищник–жертва, функциональный отклик Холлинга, эффект Олли.
Regarding the dynamics of cosymmetric predator – prey systems
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 799-813Просмотров за год: 12. Цитирований: 3 (РИНЦ).To study nonlinear effects of biological species interactions numerical-analytical approach is being developed. The approach is based on the cosymmetry theory accounting for the phenomenon of the emergence of a continuous family of solutions to differential equations where each solution can be obtained from the appropriate initial state. In problems of mathematical ecology the onset of cosymmetry is usually connected with a number of relationships between the parameters of the system. When the relationships collapse families vanish, we get a finite number of isolated solutions instead of a continuum of solutions and transient process can be long-term, dynamics taking place in a neighborhood of a family that has vanished due to cosymmetry collapse.
We consider a model for spatiotemporal competition of predators or prey with an account for directed migration, Holling type II functional response and nonlinear prey growth function permitting Alley effect. We found out the conditions on system parameters under which there is linear with respect to population densities cosymmetry. It is demonstated that cosymmetry exists for any resource function in case of heterogeneous habitat. Numerical experiment in MATLAB is applied to compute steady states and oscillatory regimes in case of spatial heterogeneity.
The dynamics of three population interactions (two predators and a prey, two prey and a predator) are considered. The onset of families of stationary distributions and limit cycle branching out of equlibria of a family that lose stability are investigated in case of homogeneous habitat. The study of the system for two prey and a predator gave a wonderful result of species coexistence. We have found out parameter regions where three families of stable solutions can be realized: coexistence of two prey in absence of a predator, stationary and oscillatory distributions of three coexisting species. Cosymmetry collapse is analyzed and long-term transient dynamics leading to solutions with the exclusion of one of prey or extinction of a predator is established in the numerical experiment.
-
Модель для анализа неравенства доходов на основе конечной функциональной последовательности (проблемы адекватности и применения)
Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 675-689Рассмотрены вопросы адекватности разработанной ранее автором модели для анализа неравенства доходов, основанной на эмпирически подтвержденной гипотезе о том, что относительные (по отношению к доходу наиболее богатой группы) величины дохода 20% групп населения в совокупном доходе могут быть приближенно представлены в виде конечной функциональной последовательности, каждый член которой зависит от одного параметра — специально определенного показателя неравенства. Показано, что в дополнение к существующим методам анализа неравенства с помощью этой модели можно определить зависимость доли дохода 20%, 10% и более мелких групп населения от уровня неравенства, выявить особенности их изменения при росте неравенства, рассчитать уровень неравенства при известных соотношениях между доходами различных групп населения и др.
В работе приводится более подробное подтверждение адекватности предложенной модели по сравнению с полученными ранее результатами статистического анализа эмпирических данных о распределении доходов между 20%- и 10%-ми группами населения. Оно основано на анализе определенных соотношений между величинами квинтилей и децилей согласно предлагаемой модели. Проверка этих соотношений проведена по совокупности данных для большого числа стран. Полученные оценки подтверждают достаточно высокую точность модели.
Приведены данные, которые подтверждают возможность применения модели для анализа зависимости распределения доходов по группам населения от уровня неравенства, а также для оценки показателя неравенства для вариантов соотношений доходов между различными группами, в том числе когда доход 20% наиболее богатых равен доходу 60% бедных, доходу 40% среднего класса или доходу 80% остального населения, а также когда доход 10% самых богатых равен доходу 40%, 50% или 60% бедных, доходу различных групп среднего класса и др., а также для случаев, когда распределение доходов подчиняется гармоническим пропорциям и когда квинтили и децили, соответствующие среднему классу, достигают максимума. Показано, что доли дохода наиболее богатых групп среднего класса относительно стабильны и имеют максимум при определенных уровнях неравенства.
Полученные с помощью модели результаты могут быть использованы для определения нормативов при разработке политики поэтапного повышении уровня прогрессивного налогообложения с целью перехода к уровню неравенства, характерному для стран с социально ориентированной экономикой.
Ключевые слова: неравенство, доход, модель, распределение, показатель неравенства, адекватность, последовательность.
A model for analyzing income inequality based on a finite functional sequence (adequacy and application problems)
Computer Research and Modeling, 2022, v. 14, no. 3, pp. 675-689The paper considers the adequacy of the model developed earlier by the author for the analysis of income inequality and based on an empirically confirmed hypothesis that the relative (to the income of the richest group) income values of 20% population groups in total income can be represented as a finite functional sequence, each member of which depends on one parameter — a specially defined indicator of inequality. It is shown that in addition to the existing methods of inequality analysis, the model makes it possible to estimate with the help of analytical expressions the income shares of 20%, 10% and smaller groups of the population for different levels of inequality, as well as to identify how they change with the growth of inequality, to estimate the level of inequality for known ratios between the incomes of different groups of the population, etc.
The paper provides a more detailed confirmation of the proposed model adequacy in comparison with the previously obtained results of statistical analysis of empirical data on the distribution of income between the 20% and 10% population groups. It is based on the analysis of certain ratios between the values of quintiles and deciles according to the proposed model. The verification of these ratios was carried out using a set of data for a large number of countries and the estimates obtained confirm the sufficiently high accuracy of the model.
Data are presented that confirm the possibility of using the model to analyze the dependence of income distribution by population groups on the level of inequality, as well as to estimate the inequality indicator for income ratios between different groups, including variants when the income of the richest 20% is equal to the income of the poor 60 %, income of the middle class 40% or income of the rest 80% of the population, as well as when the income of the richest 10% is equal to the income of the poor 40 %, 50% or 60%, to the income of various middle class groups, etc., as well as for cases, when the distribution of income obeys harmonic proportions and when the quintiles and deciles corresponding to the middle class reach a maximum. It is shown that the income shares of the richest middle class groups are relatively stable and have a maximum at certain levels of inequality.
The results obtained with the help of the model can be used to determine the standards for developing a policy of gradually increasing the level of progressive taxation in order to move to the level of inequality typical of countries with social oriented economy.
-
Пространственно-временная динамика и принцип конкурентного исключения в сообществе
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 815-824Проблема видового разнообразия является предметом постоянного внимания со стороны биологов и экологов. Она исследуется и в моделях сообществ. Принцип конкурентного исключения имеет прямое отношение к этой проблеме. Он означает невозможность сосуществования в сообществе видов, когда их количество превосходит число влияющих взаимно независимых факторов. Известный советский микробиолог Г. Ф. Гаузе высказал и экспериментально обосновал схожий принцип о том, что каждый вид имеет свою собственную экологическую нишу и никакие два разных вида не могут занять одну и ту же экологическую нишу. Если под влияющими факторами понимать плотностнозависимые контролирующие рост факторы и экологическую нишу описывать с помощью этих факторов, то принцип Гаузе и принцип конкурентного исключения, по сути, идентичны. К настоящему времени известны многие примеры нарушения этого принципа в природных системах. Одним из таких примеров является сообщество видов планктона, сосуществующих на ограниченном пространстве с небольшим числом влияющих факторов. В современной экологии данный парадокс известен как парадокс планктона или парадокс Хатчинсона. Объяснения этому варьируют от неточного выявления набора факторов до различных видов пространственной и временной неоднородностей. Для двухвидового сообщества с одним фактором влияния с нелинейными функциями роста и смертности доказана возможность устойчивого сосуществования видов. В этой работе рассматриваются ситуации нелинейности и пространственной неоднородности в двухвидовом сообществе с одним фактором влияния. Показано, что при нелинейных зависимостях от плотности популяции устойчивое стационарное сосуществование видов возможно в широком диапазоне изменения параметров. Пространственная неоднородность способствует нарушению принципа конкурентного исключения и в случаях неустойчивости стационарного состояния по Тьюрингу. В соответствии с общей теорией возникают квазистационарные устойчивые структуры сосуществования двух видов при одном влияющем факторе. В работе показано, что неустойчивость по Тьюрингу возможна, если хотя бы один из видов оказывает положительное влияние на фактор. Нелинейность модели по фазовым переменным и ее пространственная распределенность порождают нарушения принципа конкурентного исключения (и принципа Гаузе) как в виде устойчивых пространственно-однородных состояний, так и в виде квазиустойчивых пространственно-неоднородных структур при неустойчивом стационарном состоянии сообщества.
Ключевые слова: сообщество, видовая структура, математическая модель, фактор, неустойчивость по Тьюрингу.
Spatiotemporal dynamics and the principle of competitive exclusion in community
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 815-824Просмотров за год: 11.Execution or violation of the principle of competitive exclusion in communities is the subject of many studies. The principle of competitive exclusion means that coexistence of species in community is impossible if the number of species exceeds the number of controlling mutually independent factors. At that time there are many examples displaying the violations of this principle in the natural systems. The explanations for this paradox vary from inexact identification of the set of factors to various types of spatial and temporal heterogeneities. One of the factors breaking the principle of competitive exclusion is intraspecific competition. This study holds the model of community with two species and one influencing factor with density-dependent mortality and spatial heterogeneity. For such models possibility of the existence of stable equilibrium is proved in case of spatial homogeneity and negative effect of the species on the factor. Our purpose is analysis of possible variants of dynamics of the system with spatial heterogeneity under the various directions of the species effect on the influencing factor. Numerical analysis showed that there is stable coexistence of the species agreed with homogenous spatial distributions of the species if the species effects on the influencing factor are negative. Density-dependent mortality and spatial heterogeneity lead to violation of the principle of competitive exclusion when equilibriums are Turing unstable. In this case stable spatial heterogeneous patterns can arise. It is shown that Turing instability is possible if at least one of the species effects is positive. Model nonlinearity and spatial heterogeneity cause violation of the principle of competitive exclusion in terms of both stable spatial homogenous states and quasistable spatial heterogeneous patterns.
-
Новый метод стилеметрии на основе статистики числительных
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 837-850Предложен новый метод статистического анализа текстов. Исследовано распределение частот различных первых значащих цифр в числительных англоязычных текстов. Учитываются количественные и порядковые числительные, выраженные как цифрами, так и словесно. Предварительно из текста удаляются случайно попавшие в него числительные, не отражающие авторский замысел (номера страниц, маркеры списков, идиоматические выражения, устойчивые обороты речи и тому подобное). Обнаружено, что для сборных текстов разного авторства частоты первых значащих цифр приближенно соответствуют известному закону Бенфорда, но с резким преобладанием встречаемости единицы. В связных авторских текстах возникают характерные отклонения от закона Бенфорда; показано, что эти отклонения являются статистически устойчивыми и значимыми авторскими особенностями, позволяющими при определенных условиях ответить на вопрос об авторстве и различить тексты разных авторов. Требуется, чтобы текст был достаточно длинным (не менее чем порядка 200 кБ). Распределение первых значащих цифр конца ряда $\{1, 2, \ldots, 8, 9\}$ подвержено сильным флуктуациям и не показательно для нашей цели. Цель теоретического обоснования найденной эмпирической закономерности в работе не ставится, но продемонстрировано ее практическое использование для атрибуции текстов. Предлагаемый подход и сделанные выводы подкреплены примерами компьютерного анализа художественных текстов У. М. Теккерея, М. Твена, Р. Л. Стивенсона, Дж.Джойса, сестер Бронте, Дж.Остин. На основе разработанной методологии рассмотрены проблемы авторства текста, ранее приписывавшегося Л.Ф. Бауму (результат согласуется с полученным другими методами), а также известного романа Харпер Ли «Убить пересмешника»; показано, что к написанию первоначального варианта этой книги («Пойди, поставь сторожа») мог быть причастен Трумен Капоте, но финальный текст, вероятно, принадлежит Харпер Ли. Результаты подтверждены на основе параметрического критерия Пирсона, а также непараметрических U-критерия Манна–Уитни и критерия Крускала–Уоллиса.
Ключевые слова: атрибуция текстов, первая значащая цифра числительных.
A novel method of stylometry based on the statistic of numerals
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 837-850A new method of statistical analysis of texts is suggested. The frequency distribution of the first significant digits in numerals of English-language texts is considered. We have taken into account cardinal as well as ordinal numerals expressed both in figures, and verbally. To identify the author’s use of numerals, we previously deleted from the text all idiomatic expressions and set phrases accidentally containing numerals, as well as itemizations and page numbers, etc. Benford’s law is found to hold approximately for the frequencies of various first significant digits of compound literary texts by different authors; a marked predominance of the digit 1 is observed. In coherent authorial texts, characteristic deviations from Benford’s law arise which are statistically stable significant author peculiarities that allow, under certain conditions, to consider the problem of authorship and distinguish between texts by different authors. The text should be large enough (at least about 200 kB). At the end of $\{1, 2, \ldots, 9\}$ digits row, the frequency distribution is subject to strong fluctuations and thus unrepresentative for our purpose. The aim of the theoretical explanation of the observed empirical regularity is not intended, which, however, does not preclude the applicability of the proposed methodology for text attribution. The approach suggested and the conclusions are backed by the examples of the computer analysis of works by W.M. Thackeray, M. Twain, R. L. Stevenson, J. Joyce, sisters Bront¨e, and J.Austen. On the basis of technique suggested, we examined the authorship of a text earlier ascribed to L. F. Baum (the result agrees with that obtained by different means). We have shown that the authorship of Harper Lee’s “To Kill a Mockingbird” pertains to her, whereas the primary draft, “Go Set a Watchman”, seems to have been written in collaboration with Truman Capote. All results are confirmed on the basis of parametric Pearson’s chi-squared test as well as non-parametric Mann –Whitney U test and Kruskal –Wallis test.
Keywords: text attribution, first significant digit of numerals.Просмотров за год: 10.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"