Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'solution method':
Найдено статей: 260
  1. Будак В.П., Желтов В.С., Калакуцкий Т.К.
    Локальные оценки метода Монте-Карло в решении уравнения глобального освещения с учетом спектрального представления объектов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 75-84

    В статье рассматриваются локальная и двойная локальная оценка метода Монте-Карло при решении уравнения глобального освещения. Локальная оценка позволяет в диффузном приближении рассчитывать освещенность в произвольной точке, тогда как двойная локальная оценка позволяется вычислять непосредственно яркость в заданной точке по заданному направлению. В статье дается математическое обоснование локальных оценок и рассмотрены основные этапы реализации программного обеспечения. Также рассматривается представление трехмерных объектов в базисе сферических функций и возможность использования их в локальных оценках.

    Budak V.P., Zheltov V.S., Kalakutsky T.K.
    Local estimations of Monte Carlo method with the object spectral representation in the solution of global illumination
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 75-84

    The article deals with the local and double local estimation of the Monte Carlo method for solving the equation of global illumination. The local estimation allows calculating the illumination at any point at the approximation of diffuse reflection, whereas the double local estimation allows calculating directly the luminance at a given point in a given direction. The article presents the mathematical basis of local estimations and the basic stages of the software implementation. The representation of three-dimensional objects in the basis of spherical functions and the possibility of using them in the local estimations are also considered.

    Цитирований: 2 (РИНЦ).
  2. Прохоров И.В., Жуплев А.С.
    Об эффективности методов максимального сечения в теории переноса излучения
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 573-582

    В работе рассматриваются две модификации метода максимального сечения для решения стационарного уравнения переноса излучения в трехмерной неоднородной среде. Обе модификации основаны на применении метода Монте-Карло к суммированию ряда Неймана для решения уравнения переноса. Одна из них — традиционная, вторая — основана на использовании ветвящихся цепей Маркова. Проводится численное сравнение этих алгоритмов.

    Prokhorov I.V., Zhuplev A.S.
    On the efficiency of the maximum cross section method in radiation transport theory
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 573-582

    We consider two versions of the maximum cross section method for the solutions of the stationary equation of radiative transfer in dimensional inhomogeneous medium. Both are based on the application Monte-Carlo method to the summation of the Neumann series for the solution transport equation. First modification is traditional and second is based on the use of branching Markov chains. We carried out numerical comparison of these algorithms.

    Просмотров за год: 4. Цитирований: 2 (РИНЦ).
  3. Волохова А.В., Земляная Е.В., Лахно В.Д., Амирханов И.В., Пузынин И.В., Пузынина Т.П.
    Численное исследование фотовозбужденных поляронных состояний в воде
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 253-261

    Разработан метод и комплекс программ для численного моделирования процесса формирования поляронных состояний в конденсированных средах. Проведено численное исследование этого процесса для водной среды при воздействии лазерного облучения в ультрафиолетовом диапазоне. Показано, что в рамках предложенного подхода удается численно воспроизвести экспериментальные данные по формированию гидратированных электронов. Представлена схема численного решения системы нелинейных дифференциальных уравнений в частных производных, описывающих динамическую модельпо лярона. Программная реализация выполнена с использованием технологии параллельного программирования MPI. Обсуждаются численные результаты в сравнении с экспериментальными данными и теоретическими оценками.

    Volokhova A.V., Zemlyanay E.V., Lakhno V.D., Amirkhanov I.V., Puzynin I.V., Puzynina T.P.
    Numerical investigation of photoexcited polaron states in water
    Computer Research and Modeling, 2014, v. 6, no. 2, pp. 253-261

    A method and a complex of computer programs are developed for the numerical simulation of the polaron states excitation process in condensed media. A numerical study of the polaron states formation in water under the action of the ultraviolet range laser irradiation is carried out. Our approach allows to reproduce the experimental data of the hydrated electrons formation. A numerical scheme is presented for the solution of the respective system of nonlinear partial differential equations. Parallel implementation is based on the MPI technique. The numerical results are given in comparison with the experimental data and theoretical estimations.

    Цитирований: 1 (РИНЦ).
  4. Муратов М.В., Петров И.Б., Левянт В.Б.
    Разработка математических моделей трещин для численного решения задач сейсморазведки с применением сеточно-характеристического метода
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 911-925

    Данная статья посвящена описанию разработанных математических моделей трещин, которые могут быть применены для численного решения задач сейсморазведки с использованием сеточно- характеристического метода на неструктурированных треугольных (в двумерном случае) и тетраэдральных (в трехмерном случае) сетках. Такой подход позволяет корректно обсчитывать динамические процессы в условиях неоднородностей в области интегрирования. В основе разработанных моделей неоднородностей лежит концепция бесконечно-тонкой трещины — трещина задается в виде контактной границы. Такой подход заметно сокращает потребление вычислительных ресурсов за счет отсутствия необходимости задания сетки внутри трещины. В то же время он позволяет задавать трещину дискретно в области интегрирования, что дает возможность наблюдать качественно новые эффекты, которые невозможно получить с применением эффективных моделей трещиноватости, активно используемых в вычислительной сейсмике.

    Основной задачей при разработке моделей было получение максимального точного результата. Разрабатывались модели, позволяющие получить отклик, близкий к отклику реально существующей трещины в геологической среде. Рассматривались газонасыщенные, флюидонасыщенные трещины, слипшиеся трещины, частично слипшиеся трещины, а также трещины с заданием сил динамического трения. Поведение трещины определялось характером задаваемого условия на контактной границе.

    Пустые трещины задавались условием свободной границы. Такое условие давало возможность полного отражения от трещины волнового фронта. Флюидонасыщенность обеспечивало условие свободного скольжения на контактной границе. При таком условии наблюдалось полное прохождение продольных волн через трещину и отражение поперечных. На слипшихся трещинах использовалось условие полного слипания. Для реальных трещин, в которых расстояние между створками не равномерное и местами происходит соприкосновение (слипание) створок, была предложена модель частично слипшейся трещины. На разных точках контактной границы трещины задавались разные условия: условия скольжения (при флюидонасыщении трещины) и слипания, свободной границы (при газонасыщении трещины) и слипания. Почти такой же эффект достигается использованием модели трещины с условием динамического трения. Однако ее существенным недостатком является невозможность задания доли слипшейся поверхности трещины в силу того, что коэффициент трения может принимать значения от нуля до бесконечности. Этого недостатка лишена модель частично слипшейся трещины.

    Muratov M.V., Petrov I.B., Leviant V.B.
    The development of fracture mathematical models for numerical solution of exploration seismology problems with use of grid-characteristic method
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 911-925

    The article contains the description of developed mathematical models of fractures which can be used for numerical solution of exploration seismology problems with use of grid-characteristic method on unstructured triangular and tetrahedral meshes. The base of developed models is the concept of infinitely thin fracture. This fracture is represented by contact boundary. Such approach significantly reduces the consumption of computer resources by the absence of the mesh definition inside of fracture necessity. By the other side it lets state the fracture discretely in integration domain, therefore one can observe qualitative new effects which are not available to observe by use of effective models of fractures, actively used in computational seismic.

    The main target in the development of models have been getting the most accurate result. Developed models thet can receive the response close to the actual response of the existing fracture in geological environment. We considered fluid-filled fractures, glued and partially glued fractures, and also fractures with dynamical friction force. Fracture behavior determinated by the nature of condition on the border.

    Empty fracture was represented as free boundary condition. This condition give us opportunity for total reflection of wave fronts from fracture. Fluid-filling provided the condition for sliding on the border. Under this condition, there was a passage of longitudinal and total reflection of converted waves. For the real fractures, which has unequal distance between the borders has been proposed the model of partially glued fracture. At different points of the fracture's boundary were sat different conditions. Almost the same effect is achieved by using a fracture model of dynamic friction condition. But its disadvantage is the inabillity to specify the proportion of fracture's glued area due to the friction factor can take values from zero to infinity. The model of partially glued fracture is devoid of this disadvantage.

    Просмотров за год: 9.
  5. Бураго Н.Г., Никитин И.С.
    Алгоритмы сквозного счета для процессов разрушения
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 645-666

    В работе проведен краткий обзор имеющихся подходов к расчету разрушения твердых тел. Основное внимание уделено алгоритмам, использующим единый подход к расчету деформирования и для неразрушенного, и для разрушенного состояний материала. Представлен термодинамический вывод единых реологических соотношений, учитывающих упругие, вязкие и пластические свойства материалов и описывающих потерю способности сопротивления деформации по мере накопления микроповреждений. Показано, что рассматриваемая математическая модель обеспечивает непрерывную зависимость решения от входных параметров (параметров материальной среды, начальных и граничных условий, параметров дискретизации) при разупрочнении материала.

    Представлены явные и неявные безматричные алгоритмы расчета эволюции деформирования. Неявные схемы реализованы с использованием итераций метода сопряженных градиентов, при этом расчет каждой итерации в точности совпадает с расчетом шага по времени для двухслойных явных схем. Так что алгоритмы решения являются очень простыми.

    Приведены результаты решения типовых задач разрушения твердых деформируемых тел для медленных (квазистатических) и быстрых (динамических) процессов деформации. На основании опыта рас- четов даны рекомендации по моделированию процессов разрушения и обеспечению достоверности численных решений.

    Burago N.G., Nikitin I.S.
    Algorithms of through calculation for damage processes
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 645-666

    The paper reviews the existing approaches to calculating the destruction of solids. The main attention is paid to algorithms using a unified approach to the calculation of deformation both for nondestructive and for the destroyed states of the material. The thermodynamic derivation of the unified rheological relationships taking into account the elastic, viscous and plastic properties of materials and describing the loss of the deformation resistance ability with the accumulation of microdamages is presented. It is shown that the mathematical model under consideration provides a continuous dependence of the solution on input parameters (parameters of the material medium, initial and boundary conditions, discretization parameters) with softening of the material.

    Explicit and implicit non-matrix algorithms for calculating the evolution of deformation and fracture development are presented. Non-explicit schemes are implemented using iterations of the conjugate gradient method, with the calculation of each iteration exactly coinciding with the calculation of the time step for two-layer explicit schemes. So, the solution algorithms are very simple.

    The results of solving typical problems of destruction of solid deformable bodies for slow (quasistatic) and fast (dynamic) deformation processes are presented. Based on the experience of calculations, recommendations are given for modeling the processes of destruction and ensuring the reliability of numerical solutions.

    Просмотров за год: 24.
  6. Шабанов А.Э., Петров М.Н., Чикиткин А.В.
    Многослойная нейронная сеть для определения размеров наночастиц в задаче лазерной спектрометрии
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 265-273

    Решение задачи лазерной спектрометрии позволяет определять размеры частиц в растворе по спектру интенсивности рассеянного света. В результате эксперимента методом динамического рассеяния света получается кривая интенсивности рассеяния, по которой необходимо определить, частицы каких размеров представлены в растворе. Экспериментально полученный спектр интенсивности сравнивается с теоретически ожидаемым спектром, который является кривой Лоренца. Основная задача сводится к тому, чтобы на основании этих данных найти относительные концентрации частиц каждого сорта, представленных в растворе. В статье представлен способ построения и использования нейронной сети, обученной на синтетических данных, для определения размера частиц в растворе в диапазоне 1–500 нм. Нейронная сеть имеет полносвязный слой из 60 нейронов с функцией активации RELU на выходе, слой из 45 нейронов и с аналогичной функцией активации, слой dropout и 2 слоя с количеством нейронов 15 и 1 (выход сети). В статье описано, как сеть обучалась и тестировалась на синтетических и экспериментальных данных. На синтетических данных метрика «среднеквадратичное отклонение» (rmse) дала значение 1.3157 нм. Экспериментальные данные были получены для размеров частиц 200 нм, 400 нм и раствора с представителями обоих размеров. Сравниваются результаты работы нейронной сети и классических линейных методов, основанных на применении различных регуляризаций за счет введения дополнительных параметров и применяемых для определения размера частиц. К недостаткам классических методов можно отнести трудность автоматического определения степени регуляризации: слишком сильная регуляризация приводит к тому, что кривые распределения частиц по размерам сильно сглаживаются, а слабая регуляризация дает осциллирующие кривые и низкую надежность результатов. В работе показано, что нейронная сеть дает хорошее предсказание для частиц с большим размером. Для малых размеров предсказание хуже, но ошибка быстро уменьшается с увеличением размера.

    Shabanov A.E., Petrov M.N., Chikitkin A.V.
    A multilayer neural network for determination of particle size distribution in Dynamic Light Scattering problem
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 265-273

    Solution of Dynamic Light Scattering problem makes it possible to determine particle size distribution (PSD) from the spectrum of the intensity of scattered light. As a result of experiment, an intensity curve is obtained. The experimentally obtained spectrum of intensity is compared with the theoretically expected spectrum, which is the Lorentzian line. The main task is to determine on the basis of these data the relative concentrations of particles of each class presented in the solution. The article presents a method for constructing and using a neural network trained on synthetic data to determine PSD in a solution in the range of 1–500 nm. The neural network has a fully connected layer of 60 neurons with the RELU activation function at the output, a layer of 45 neurons and the same activation function, a dropout layer and 2 layers with 15 and 1 neurons (network output). The article describes how the network has been trained and tested on synthetic and experimental data. On the synthetic data, the standard deviation metric (rmse) gave a value of 1.3157 nm. Experimental data were obtained for particle sizes of 200 nm, 400 nm and a solution with representatives of both sizes. The results of the neural network and the classical linear methods are compared. The disadvantages of the classical methods are that it is difficult to determine the degree of regularization: too much regularization leads to the particle size distribution curves are much smoothed out, and weak regularization gives oscillating curves and low reliability of the results. The paper shows that the neural network gives a good prediction for particles with a large size. For small sizes, the prediction is worse, but the error quickly decreases as the particle size increases.

    Просмотров за год: 16.
  7. Гаспарян М.М., Самонов А.С., Сазыкина Т.А., Остапов Е.Л., Сакмаров А.В., Шайхатаров О.К.
    Решатель уравнения Больцмана на неструктурированных пространственных сетках
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447

    Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.

    Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.

    Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.

    В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.

    Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.

    Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.

    Gasparyan M.M., Samonov A.S., Sazykina T.A., Ostapov E.L., Sakmarov A.V., Shahatarov O.K.
    The Solver of Boltzmann equation on unstructured spatial grids
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447

    The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.

    In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.

    A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.

    The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.

    The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.

    The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.

    Просмотров за год: 13.
  8. Стогний П.В., Петров И.Б.
    Численное моделирование распространения сейсмических волн в моделях с ледовым полем в зоне арктического шельфа
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 73-82

    В зоне арктического шельфа расположены огромные запасы углеводородов. Проведение исследовательских работ на данной территории осложняется наличием различных ледовых образований, например айсбергов, торосов, ледовых полей. Во время проведения сейсморазведочных работ последние из выше перечисленных ледовых образований, ледовые поля, вносят в сейсмограммы многочисленные отражения сейсмического сигнала от границ «лед–вода» и «лед–воздух», распространяющиеся по всей поверхности льда. Данные многочисленные отражения необходимо учитывать при анализе сейсмограмм, а также уметь их исключать с целью получения отраженных волн от нижележащих геологических слоев, включая залежи углеводородов.

    В работе решается задача о распространении сейсмических волн в неоднородной среде. Геологические среды описываются системами уравнений линейной упругости и акустики. Представлено подробное описание численного решения данных систем уравнений с помощью сеточно-характеристического метода. Для решения конечных одномерных уравнений переноса, к которым приводятся системы, применяется схема Русанова третьего порядка точности. В работе рассматривается способ подавления многочисленных отражений во льду путем заглубления источника сейсмического сигнала вплоть до границы с водой. Такой способ подавления кратных волн часто используется в реальных геологических работах. Представлены результаты численных расчетов распространения сейсмических волн в моделях с заглубленным источником импульса, а также в моделях с сейсмическим источником на поверхности льда для трехмерного случая. Результатами численного моделирования являются волновые картины, графики значений продольной компоненты скорости и сейсмограммы для двух рассматриваемых постановок задач. В работе проводится анализ влияния различных постановок источника на уменьшение продольных компонент скорости в слое льда, на результирующие сейсмограммы и волновые поля. Делается вывод о том, что заглубление источника только ухудшает конечный результат при условии помещения источника и приемников сигнала на границе «лед–вода». Уменьшение продольных компонент скорости во льду показала постановка источника на поверхности льда.

    Stognii P.V., Petrov I.B.
    Numerical modelling of seismic waves spread in models with an ice field in the arctic shelf
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 73-82

    The Arctic region contains large hydrocarbon deposits. The presence of different ice formations, such as icebergs, ice hummocks, ice fields, complicates the process of carrying out seismic works on the territory. The last of them, ice fields, bring multiple reflections, spreading all over the surface of ice, into seismogramms. These multiple reflections are necessary to be taken into account while analyzing the seismograms, and geologists should be able to exclude them in order to obtain the reflected waves from the lower geological layers, including hydrocarbon layers.

    In this work, we solve the problem of the seismic waves spread in the heterogeneous medium. The systems of equations for the linear elastic medium and for the acoustic medium describe the geological layers. We present the detailed description of the numerical solution of these systems of equations with the help of the grid-characteristic method. The final 1D transfer equations are solved with the use of the Rusanov scheme of the third order of accuracy. In the work, we examine the way of multiple waves decrease in ice by establishing the source of impulse deep into the ice field on border with water. We present the results of computer modelling of the seismic waves spread in geological layers, where the seismic source of impulse is situated on the contact border between ice and water, and also with the seismic source of impulse on the surface of ice for the 3D case. The results of the numerical modelling are presented by wave fields, graphs of the velocity x-components and seismogramms for the two problem formulations. We carry out the analysis of influence of establishing the source of impulse on the border between ice and water on the decrease of the x-components of seismic wave velocities, on seismogramms and on wave fields. As a result, the model, where the seismic source of impulse is situated on the contact border between ice and water, makes worse the final result. The model with the source of impulse on the surface of ice demonstrates a decrease of the x-components of seismic wave velocities.

  9. Маловичко М.С., Петров И.Б.
    О численном решении совместных обратных задач геофизики с использованием требования структурного подобия
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 329-343

    Решение обратных геофизических задач сложно в силу их математически некорректной постановки и большой вычислительной емкости. Геофизическая разведка малоизученных регионов, таких как шельф северных морей, дополнительно осложнена отсутствием надежных геологических данных. В этих условиях большое значение приобретают способы совместного использования информации, полученной различными геофизическими методами. Настоящая работа посвящена развитию подхода к совместной инверсии, основанного на требовании обращения в ноль определителя матрицы Грама для векторов параметров тех типов, которые используются в инверсии. В рамках этого подхода минимизируется нелинейный функционал, состоящий из суммы квадратов взвешенных невязок, суммы стабилизирующих функционалов и члена, отвечающего за наложение условия структурного подобия. Мы применяем этот подход к инверсии двух типов геофизических данных: сейсмики и электроразведки. Мы изучаем инверсию акустических данных совместно с низкочастотным электрическим полем с наложением требования структурного подобия на результирующие распределения скорости звука и электропроводности.

    Рассмотрены постановка задачи обратной задачи и численный метод оптимизации. Нелинейная минимизация выполняется методом сопряженных градиентов. Эффективность разработанного подхода продемонстрирована на численном примере, в котором трехмерное распределение электропроводности считалось известным точно, а распределение скорости звука подбиралось путем решения соответствующей обратной задачи. Для численного эксперимента было использовано распределение скорости звука, построенное на основании упрощенных сейсмических горизонтов реального морского месторождения. Для этого распределения рассчитывались синтетические сейсмограммы, которые служили входными данными для алгоритма инверсии. Результирующее распределение скорости звука не только обеспечивало совпадение данных до заданной точности, но и было согласовано с заданным распределением электропроводности. На численных примерах продемонстрировано, что оптимально выбранный вес структурного ограничения может существенно улучшить детальность решения обратной задачи и позволяет восстановить особенности, которые иначе были бы не разрешены.

    Malovichko M.S., Petrov I.B.
    On numerical solution of joint inverse geophysical problems with structural constraints
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 329-343

    Inverse geophysical problems are difficult to solve due to their mathematically incorrect formulation and large computational complexity. Geophysical exploration in frontier areas is even more complicated due to the lack of reliable geological information. In this case, inversion methods that allow interpretation of several types of geophysical data together are recognized to be of major importance. This paper is dedicated to one of such inversion methods, which is based on minimization of the determinant of the Gram matrix for a set of model vectors. Within the framework of this approach, we minimize a nonlinear functional, which consists of squared norms of data residual of different types, the sum of stabilizing functionals and a term that measures the structural similarity between different model vectors. We apply this approach to seismic and electromagnetic synthetic data set. Specifically, we study joint inversion of acoustic pressure response together with controlled-source electrical field imposing structural constraints on resulting electrical conductivity and P-wave velocity distributions.

    We start off this note with the problem formulation and present the numerical method for inverse problem. We implemented the conjugate-gradient algorithm for non-linear optimization. The efficiency of our approach is demonstrated in numerical experiments, in which the true 3D electrical conductivity model was assumed to be known, but the velocity model was constructed during inversion of seismic data. The true velocity model was based on a simplified geology structure of a marine prospect. Synthetic seismic data was used as an input for our minimization algorithm. The resulting velocity model not only fit to the data but also has structural similarity with the given conductivity model. Our tests have shown that optimally chosen weight of the Gramian term may improve resolution of the final models considerably.

  10. Садин Д.В.
    Анализ диссипативных свойств гибридного метода крупных частиц для структурно сложных течений газа
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 757-772

    Изучаются вычислительные свойства параметрического класса конечно-объемных схем с настраиваемыми диссипативными свойствами с расщеплением по физическим процессам на лагранжев, эйлеров и заключительный этапы (гибридный метод крупных частиц). Метод обладает вторым порядком аппроксимации по пространству и времени на гладких решениях. Регуляризация численного решения на лагранжевом этапе осуществляется нелинейной коррекцией искусственной вязкости, величина которой, независимо от разрешения сетки, стремится к нулю вне зоны разрывови экстремумовв решении. На эйлеровом и заключительном этапе вначале реконструируются примитивные переменные (плотность, скорость и полная энергия) путем взвешенной ограничителем потоков аддитивной комбинации противопоточной и центральной аппроксимаций. Затем из них формируются численные дивергентные потоки. При этом выполняются дискретные аналоги законов сохранения.

    Выполнен анализ диссипативных свойств метода с использованием известных ограничителей вязкости и потоков, а также их линейной комбинации. Разрешающая способность схемы и качество численных решений продемонстрированы на примерах двумерных тестов с обтеканием ступеньки потоком газа с числами Маха 3, 10 и 20, двойным маховским отражением сильной ударной волны и с импульсным сжатием газа. Изучено влияние схемной вязкости метода на численное воспроизведение неустойчивости на контактных поверхностях газов. Установлено, что уменьшение уровня диссипативных свойств схемы в задаче с импульсным сжатием газа приводит к разрушению симметричного решения и формированию хаотической неустойчивости на контактной поверхности.

    Численные решения сопоставлены с результатами других авторов, полученных по схемам повышенного порядка аппроксимации: КАБАРЕ, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge–Kutta Discontinuous Galerkin), с гибридной взвешенной нелинейной интерполяцией CCSSR-HW4 и CCSSR-HW6. К достоинствам гибридного метода крупных частиц относятся расширенные возможности решения задач гиперболического и смешанного типов, хорошее соотношение диссипативных и дисперсионных свойств, сочетание алгоритмической простоты и высокой разрешающей способности в задачах со сложной ударно-волновой структурой, развитием неустойчивости и вихреобразованием на контактных границах.

    Sadin D.V.
    Analysis of dissipative properties of a hybrid large-particle method for structurally complicated gas flows
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 757-772

    We study the computational properties of a parametric class of finite-volume schemes with customizable dissipative properties with splitting by physical processes into Lagrangian, Eulerian, and the final stages (the hybrid large-particle method). The method has a second-order approximation in space and time on smooth solutions. The regularization of a numerical solution at the Lagrangian stage is performed by nonlinear correction of artificial viscosity. Regardless of the grid resolution, the artificial viscosity value tends to zero outside the zone of discontinuities and extremes in the solution. At Eulerian and final stages, primitive variables (density, velocity, and total energy) are first reconstructed by an additive combination of upwind and central approximations weighted by a flux limiter. Then numerical divergent fluxes are formed from them. In this case, discrete analogs of conservation laws are performed.

    The analysis of dissipative properties of the method using known viscosity and flow limiters, as well as their linear combination, is performed. The resolution of the scheme and the quality of numerical solutions are demonstrated by examples of two-dimensional benchmarks: a gas flow around the step with Mach numbers 3, 10 and 20, the double Mach reflection of a strong shock wave, and the implosion problem. The influence of the scheme viscosity of the method on the numerical reproduction of a gases interface instability is studied. It is found that a decrease of the dissipation level in the implosion problem leads to the symmetric solution destruction and formation of a chaotic instability on the contact surface.

    Numerical solutions are compared with the results of other authors obtained using higher-order approximation schemes: CABARET, HLLC (Harten Lax van Leer Contact), CFLFh (CFLF hybrid scheme), JT (centered scheme with limiter by Jiang and Tadmor), PPM (Piecewise Parabolic Method), WENO5 (weighted essentially non-oscillatory scheme), RKGD (Runge –Kutta Discontinuous Galerkin), hybrid weighted nonlinear schemes CCSSR-HW4 and CCSSR-HW6. The advantages of the hybrid large-particle method include extended possibilities for solving hyperbolic and mixed types of problems, a good ratio of dissipative and dispersive properties, a combination of algorithmic simplicity and high resolution in problems with complex shock-wave structure, both instability and vortex formation at interfaces.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.