Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'parallel calculations':
Найдено статей: 49
  1. Найштут Ю.С.
    Решение краевых задач теории тонких упругих оболочек методом Неймана
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1143-1153

    Изучаются возможности применения метода Неймана для решения краевых задач теории тонких упругих оболочек. Приводится вариационная формулировка задач статического расчета оболочек, позволяющая рассматривать проблемы в рамках пространств обобщенных функций. Доказывается сходимость процедуры Неймана для оболочек с отверстиями, когда граничный контур закреплен не полностью. Численная реализация метода Неймана обычно требует значительного времени для получения надежного результата. В статье предлагается способ, улучшающий скорость сходимости процесса, позволяющий применить параллельные вычисления и их контроль во время работы алгоритма.

    Nayshtut Yu.S.
    Neumann's method to solve boundary problems of elastic thin shells
    Computer Research and Modeling, 2015, v. 7, no. 6, pp. 1143-1153

    This paper studies possibilities to use Neumann's method to solve boundary problems of elastic thin shells. Variational statement of statical problems for shells allows examining the problems within the space of distributions. Convergence of the Neumann's method is proved for the shells with holes when the boundary of the domain is not completely fixed. Numerical implementation of the Neumann's method normally takes a lot of time before some reliable results can be achieved. This paper suggests a way to improve convergence of the process and allows for parallel computing and checkout procedure during calculations.

    Просмотров за год: 3.
  2. Башашин М.В., Земляная Е.В., Рахмонов И.Р., Шукринов Ю.М., Атанасова П.Х., Волохова А.В.
    Вычислительная схема и параллельная реализация для моделирования системы длинных джозефсоновских переходов
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 593-604

    Рассматривается модель стека длинных джозефсоновских переходов (ДДП), состоящего из чередующихся сверхпроводящих слоев и слоев диэлектрика, с учетом индуктивной и емкостной связи между слоями. Модель описывается системой нелинейных дифференциальных уравнений в частных производных относительно разности фаз и напряжения между соседними сверхпроводящими слоями в стеке ДДП, с соответствующими начальными и граничными условиями. Численное решение этой системы уравнений основано на использовании стандартных трехточечных конечно-разностных формул для дискретной аппроксимации по пространственной координате и применении четырехшагового метода Рунге–Кутты для решения полученной задачи Коши. Разработанный параллельный алгоритм реализован на основе технологии MPI (Message Passing Interface). В работе дана математическая постановка задачи в рамках рассматриваемой модели, описаны вычислительная схема и методика расчета вольт-амперных характеристик системы ДДП, представлены два варианта параллельной реализации. Продемонстрировано влияние индуктивной и емкостной связи между ДДП на структуру вольт-амперной характеристики в рамках рассматриваемой модели. Представлены результаты методических расчетов с различными параметрами длины и количества джозефсоновских переходов в стеке ДДП в зависимости от количества задействованных параллельных вычислительных узлов. Расчеты выполнены на многопроцессорных кластерах HybriLIT и ЦИВК Многофункционального информационно-вычислительного комплекса Лаборатории информационных технологий Объединенного института ядерных исследований (Дубна). На основе полученных численных результатов обсуждается эффективность рассмотренных вариантов распределения вычислений для численного моделирования системы ДДП в параллельном режиме. Показано, что один из предложенных подходов приводит к ускорению вычислений до 9 раз по сравнению с расчетами в однопроцессорном режиме.

    Bashashin M.V., Zemlyanay E.V., Rahmonov I.R., Shukrinov J.M., Atanasova P.C., Volokhova A.V.
    Numerical approach and parallel implementation for computer simulation of stacked long Josephson Junctions
    Computer Research and Modeling, 2016, v. 8, no. 4, pp. 593-604

    We consider a model of stacked long Josephson junctions (LJJ), which consists of alternating superconducting and dielectric layers. The model takes into account the inductive and capacitive coupling between the neighbor junctions. The model is described by a system of nonlinear partial differential equations with respect to the phase differences and the voltage of LJJ, with appropriate initial and boundary conditions. The numerical solution of this system of equations is based on the use of standard three-point finite-difference formulae for discrete approximations in the space coordinate, and the applying the four-step Runge-Kutta method for solving the Cauchy problem obtained. Designed parallel algorithm is implemented by means of the MPI technology (Message Passing Interface). In the paper, the mathematical formulation of the problem is given, numerical scheme and a method of calculation of the current-voltage characteristics of the LJJ system are described. Two variants of parallel implementation are presented. The influence of inductive and capacitive coupling between junctions on the structure of the current-voltage characteristics is demonstrated. The results of methodical calculations with various parameters of length and number of Josephson junctions in the LJJ stack depending on the number of parallel computing nodes, are presented. The calculations have been performed on multiprocessor clusters HybriLIT and CICC of Multi-Functional Information and Computing Complex (Laboratory of Information Technologies, Joint Institute for Nuclear Research, Dubna). The numerical results are discussed from the viewpoint of the effectiveness of presented approaches of the LJJ system numerical simulation in parallel. It has been shown that one of parallel algorithms provides the 9 times speedup of calculations.

    Просмотров за год: 7. Цитирований: 6 (РИНЦ).
  3. В приближении однородной намагниченности построена математическая модель ячейки памяти MRAM c осью анизотропии, расположенной в плоскости запоминающего ферромагнитного слоя ячейки и ориентированной параллельно ее краю (продольная анизотропия). Модель базируется на уравнении Ландау–Лифшица–Гильберта с токовым членом в форме Слончевского–Берже. Выведена система обыкновенных дифференциальных уравнений в нормальном виде, описывающая динамику намагниченности в трехслойной вентильной структуре Co/Cu/Co в зависимости от величины тока инжекции и внешнего магнитного поля, параллельного оси анизотропии магнитных слоев. Показано, что при любых токах и полях система имеет два основных состояния равновесия, расположенных на оси, совпадающей с осью анизотропии. Проведен анализ устойчивости этих состояний равновесия. Выписаны уравнения для определения дополнительных состояний равновесия. Показано, что в зависимости от величины внешнего магнитного поля и тока инжекции система может иметь всего два, четыре и шесть симметричных относительно оси анизотропии положений равновесия. Построены бифуркационные диаграммы, характеризующие основные типы динамики вектора намагниченности свободного слоя. Проведена классификация фазовых портретов на единичной сфере в зависимости от управляющих параметров (тока и поля). Изучены особенности динамики вектора намагниченности в каждой из характерных областей бифуркационной диаграммы и численно построены траектории переключения. Для построения траекторий использовался метод Рунге–Кутты. Найдены параметры, при которых существуют неустойчивые и устойчивые предельные циклы. Установлено, что неустойчивые предельные циклы существуют вокруг основного устойчивого равновесия на оси, совпадающей с осью анизотропии, а устойчивые циклы — вокруг неустойчивых дополнительных равновесий. Граница области существования устойчивых предельных циклов рассчитана численно. Обнаружены новые типы динамики под влиянием внешнего магнитного поля и спин-поляризованного тока инжекции: случайное и неполное переключение намагниченности. Аналитически определены значения пороговых токов переключения в зависимости от внешнего магнитного поля. Численно выполнены оценки времени переключения в зависимости от величин управляющих параметров.

    The mathematical model of the magnetic memory cell MRAM with the in-plane anisotropy axis parallel to the edge of a free ferromagnetic layer (longitudinal anisotropy) has been constructed using approximation of uniform magnetization. The model is based on the Landau–Lifshits–Gilbert equation with the injection-current term in the Sloncžewski–Berger form. The set of ordinary differential equations for magnetization dynamics in a three-layered Co/Cu/Cu valve under the control of external magnetic field and spin-polarized current has been derived in the normal coordinate form. It was shown that the set of equations has two main stationary points on the anisotropy axis at any values of field and current. The stationary analysis of them has been performed. The algebraic equations for determination of additional stationary points have been derived. It has been shown that, depending on the field and current magnitude, the set of equations can have altogether two, four, or six stationary points symmetric in pairs relatively the anisotropy axis. The bifurcation diagrams for all the points have been constructed. The classification of the corresponding phase portraits has been performed. The typical trajectories were calculated numerically using Runge–Kutta method. The regions, where stable and unstable limit cycles exist, have been determined. It was found that the unstable limit cycles exist around the main stable equilibrium point on the axis that coincides with the anisotropy one, whereas the stable cycles surround the unstable additional points of equilibrium. The area of their existence was determined numerically. The new types of dynamics, such as accidental switching and non-complete switching, have been found. The threshold values of switching current and field have been obtained analytically. The estimations of switching times have been performed numerically.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  4. Свириденко А.Б.
    Прямые мультипликативные методы для разреженных матриц. Несимметричные линейные системы
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 833-860

    Малая практическая ценность многих численных методов решения несимметричных систем линейных уравнений с плохо обусловленными матрицами объясняется тем, что эти методы в реальных условиях ведут себя совсем иначе, чем в случае точных вычислений. Исторически вопросам устойчивости не отводилось достаточного внимания, как в численной алгебре «средних размеров», а делался акцент на решении задач максимального порядка при данных возможностях вычислительной машины, в том числе за счет некоторой потери точности результатов. Поэтому главными объектами исследования были: наиболее целесообразное хранение информации, заключенной в разреженной матрице; поддержание наибольшей степени ее разреженности на всех этапах вычислительного процесса. Таким образом, разработка эффективных численных методов решения неустойчивых систем относится к актуальным проблемам вычислительной математики.

    В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения систем линейных уравнений, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Рассмотрен формат хранения разреженных матриц, преимущество которого состоит в возможности параллельного выполнения любых матричных операций без распаковывания, что значительно сокращает время выполнения операций и объем занимаемой памяти.

    Прямые мультипликативные методы решения систем линейных уравнений являются наиболее приспособленными для решения задач большого размера на ЭВМ: разреженные матрицы системы позволяют получать мультипликаторы, главные строки которых также разрежены, а операция умножения вектора-строки на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора.

    В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма линейного программирования предлагается положить модификацию прямого мультипликативного алгоритма решения систем линейных уравнений, основанного на интеграции техники метода линейного программирования для выбора ведущего элемента. Прямые мультипликативные методы линейного программирования являются наиболее приспособленными и для построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.

    Sviridenko A.B.
    Direct multiplicative methods for sparse matrices. Unbalanced linear systems.
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 833-860

    Small practical value of many numerical methods for solving single-ended systems of linear equations with ill-conditioned matrices due to the fact that these methods in the practice behave quite differently than in the case of precise calculations. Historically, sustainability is not enough attention was given, unlike in numerical algebra ‘medium-sized’, and emphasis is given to solving the problems of maximal order in data capabilities of the computer, including the expense of some loss of accuracy. Therefore, the main objects of study is the most appropriate storage of information contained in the sparse matrix; maintaining the highest degree of rarefaction at all stages of the computational process. Thus, the development of efficient numerical methods for solving unstable systems refers to the actual problems of computational mathematics.

    In this paper, the approach to the construction of numerically stable direct multiplier methods for solving systems of linear equations, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach consists in minimization of filling the main lines of the multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats. The storage format of sparse matrices has been studied and the advantage of this format consists in possibility of parallel execution any matrix operations without unboxing, which significantly reduces the execution time and memory footprint.

    Direct multiplier methods for solving systems of linear equations are best suited for solving problems of large size on a computer — sparse matrix systems allow you to get multipliers, the main row of which is also sparse, and the operation of multiplication of a vector-row of the multiplier according to the complexity proportional to the number of nonzero elements of this multiplier.

    As a direct continuation of this work is proposed in the basis for constructing a direct multiplier algorithm of linear programming to put a modification of the direct multiplier algorithm for solving systems of linear equations based on integration of technique of linear programming for methods to select the host item. Direct multiplicative methods of linear programming are best suited for the construction of a direct multiplicative algorithm set the direction of descent Newton methods in unconstrained optimization by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.

    Просмотров за год: 20. Цитирований: 2 (РИНЦ).
  5. Аксёнов А.А.
    FlowVision: индустриальная вычислительная гидродинамика
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 5-20

    В работе представлена новая версия программного комплекса FlowVision, предназначенного для автоматизации инженерных расчетов в области вычислительной гидродинамики: FlowVision 3.09.05. Программный комплекс (ПК) FlowVision используется для решения различных прикладных задач в различных областях промышленности. Его популярность основана на том, что он позволяет решать сложные нетрадиционные задачи, находящиеся на стыке различных дисциплин, с одной стороны, и, с другой стороны, на парадигме полной автоматизации таких трудоемких для инженера процессов, как построение расчетной сетки. FlowVision — это программный комплекс, полностью отчуждаемый от разработчиков. Он имеет развитый графический интерфейс, систему задания расчетного проекта и систему визуализации течений различными методами — от построения контуров (для скалярных переменных) и векторов (для векторных переменных) на плоскостях и поверхностях до объемной визуализации расчетных данных. Кроме этого, ПК FlowVision предоставляет пользователю возможность вычислять интегральные характеристики на поверхностях и в ограниченных объемах.

    ПК основан на конечно-объемном подходе к аппроксимации основных уравнений движения жидкости. В нем реализованы явный и неявный методы решения этих уравнений. ПК имеет автоматический построитель неструктурированной сетки с возможностью ее локальной динамической адаптации. В ПК реализован двухуровневый параллелизм, позволяющий эффективно проводить расчеты на компьютерах, имеющих распределенную и общую память одновременно. FlowVision обладает широким спектром физико-математических моделей: турбулентности (URANS, LES, ILES), горения, массопереноса с учетом химических превращений и радиоактивного распада, электрогидродинамики.

    FlowVision позволяет решать задачи движения жидкостей со скоростями, соответствующими несжимаемому или гиперзвуковому режимам за счет использования все-скоростного метода расщепления по физическим переменным для решения уравнений Навье–Стокса. FlowVision позволяет решать междисциплинарные задачи с использованием различных средств моделирования, например: моделировать многофазные течения методом VOF, обтекание подвижных тел с помощью эйлерова подхода при неподвижной расчетной сетке, моделировать вращающиеся машины с использованием метода скользящей сетки, решать задачи взаимодействия жидкости и конструкций методом двухстороннего сопряжения FlowVision с конечно-элементными кодами. В данной работе показаны примеры решения задач-вызовов: a) посадка космического корабля на воду при торможении ракетными двигателями, где есть граница раздела «воздух–вода», подвижные тела и взаимодействие сверхзвуковой струи газа с границей раздела «вода–воздух»; б) моделирование работы человеческого сердца с искусственными и живыми клапанами, спроектированными на базе томографических исследований, с использованием двухстороннего сопряжения «жидкостной» расчетной области с конечно-элементной моделью мышц сердца.

    Aksenov A.A.
    FlowVision: Industrial computational fluid dynamics
    Computer Research and Modeling, 2017, v. 9, no. 1, pp. 5-20

    The work submits new release of the FlowVision software designed for automation of engineering calculations in computational fluid dynamics: FlowVision 3.09.05. The FlowVision software is used for solving different industrial problems. Its popularity is based on the capability to solve complex non-tradition problems involving different physical processes. The paradigm of complete automation of labor-intensive and time-taking processes like grid generation makes FlowVision attractive for many engineers. FlowVision is completely developer-independent software. It includes an advanced graphical interface, the system for specifying a computational project as well as the system for flow visualization on planes, on curvilinear surfaces and in volume by means of different methods: plots, color contours, iso-lines, iso-surfaces, vector fields. Besides that, FlowVision provides tools for calculation of integral characteristics on surfaces and in volumetric regions.

    The software is based on the finite-volume approach to approximation of the partial differential equations describing fluid motion and accompanying physical processes. It provides explicit and implicit methods for time integration of these equations. The software includes automated generator of unstructured grid with capability of its local dynamic adaptation. The solver involves two-level parallelism which allows calculations on computers with distributed and shared memory (coexisting in the same hardware). FlowVision incorporates a wide spectrum of physical models: different turbulence models, models for mass transfer accounting for chemical reactions and radioactive decay, several combustion models, a dispersed phase model, an electro-hydrodynamic model, an original VOF model for tracking moving interfaces. It should be noted that turbulence can be simulated within URANS, LES, and ILES approaches. FlowVision simulates fluid motion with velocities corresponding to all possible flow regimes: from incompressible to hypersonic. This is achieved by using an original all-speed velocity-pressure split algorithm for integration of the Navier-Stokes equations.

    FlowVision enables solving multi-physic problems with use of different modeling tools. For instance, one can simulate multi-phase flows with use of the VOF method, flows past bodies moving across a stationary grid (within Euler approach), flows in rotary machines with use of the technology of sliding grid. Besides that, the software solves fluid-structure interaction problems using the technology of two-way coupling of FlowVision with finite-element codes. Two examples of solving challenging problems in the FlowVision software are demonstrated in the given article. The first one is splashdown of a spacecraft after deceleration by means of jet engines. This problem is characterized by presence of moving bodies and contact surface between the air and the water in the computational domain. The supersonic jets interact with the air-water interphase. The second problem is simulation of the work of a human heart with artificial and natural valves designed on the basis of tomographic investigations with use of a finite-element model of the heart. This problem is characterized by two-way coupling between the “liquid” computational domain and the finite-element model of the hart muscles.

    Просмотров за год: 30. Цитирований: 8 (РИНЦ).
  6. Спевак Л.Ф., Нефедова О.А.
    Численное решение двумерного нелинейного уравнения теплопроводности с использованием радиальных базисных функций
    Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 9-22

    Работа посвящена численному решению задачи о движении тепловой волны для вырождающегося нелинейного уравнения второго порядка параболического типа с источником. Нелинейность уравнения обусловлена степенной зависимостью коэффициента теплопроводности от температуры. Рассматривается задача для случая двух пространственных переменных при краевом условии, задающем закон движения фронта тепловой волны. Предложен новый алгоритм решения на основе разложения по радиальным базисным функциям и метода граничных элементов. Решение строится по шагам по времени с разностной аппроксимацией по времени. На каждом шаге решается краевая задача для уравнения Пуассона, соответствующего исходному уравнению для фиксированного момента времени. Решение такой задачи строится итерационно в виде суммы частного решения, удовлетворяющего неоднородному уравнению, и решения соответствующего однородного уравнения, удовлетворяющего граничным условиям. Однородное уравнение решается методом граничных элементов, частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Алгоритм реализован в виде программы, написанной на языке программирования С++. Организация параллельных вычислений построена с использованием открытого стандарта OpenCL, что позволило запускать одну и ту же программу, выполняющую параллельные вычисления, как на центральных многоядерных процессорах, так и на графических процессорах. Для оценки эффективности предложенного метода решения и корректности разработанной вычислительной технологии были решены тестовые примеры. Результаты расчетов сравнивались как с известными точными решениями, так и с данными, полученными авторами ранее в других работах. Проведена оценка точности решений и времени проведения расчетов. Проведен анализ эффективности использования различных систем радиальных базисных функций для решения задач рассматриваемого типа. Определена наиболее подходящая система функций. Проведенный комплексный вычислительный эксперимент показал более высокую точность расчетов по предложенному новому алгоритму по сравнению с разработанным ранее.

    Spevak L.P., Nefedova O.A.
    Numerical solution to a two-dimensional nonlinear heat equation using radial basis functions
    Computer Research and Modeling, 2022, v. 14, no. 1, pp. 9-22

    The paper presents a numerical solution to the heat wave motion problem for a degenerate second-order nonlinear parabolic equation with a source term. The nonlinearity is conditioned by the power dependence of the heat conduction coefficient on temperature. The problem for the case of two spatial variables is considered with the boundary condition specifying the heat wave motion law. A new solution algorithm based on an expansion in radial basis functions and the boundary element method is proposed. The solution is constructed stepwise in time with finite difference time approximation. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is solved. The solution to this problem is constructed iteratively as the sum of a particular solution to the nonhomogeneous equation and a solution to the corresponding homogeneous equation satisfying the boundary conditions. The homogeneous equation is solved by the boundary element method. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The calculation algorithm is optimized by parallelizing the computations. The algorithm is implemented as a program written in the C++ language. The parallel computations are organized by using the OpenCL standard, and this allows one to run the same parallel code either on multi-core CPUs or on graphic CPUs. Test cases are solved to evaluate the effectiveness of the proposed solution method and the correctness of the developed computational technique. The calculation results are compared with known exact solutions, as well as with the results we obtained earlier. The accuracy of the solutions and the calculation time are estimated. The effectiveness of using various systems of radial basis functions to solve the problems under study is analyzed. The most suitable system of functions is selected. The implemented complex computational experiment shows higher calculation accuracy of the proposed new algorithm than that of the previously developed one.

  7. Батгэрэл Б., Никонов Э.Г., Пузынин И.В.
    Процедура вывода явных, неявных и симметричных симплектических схем для численного решения гамильтоновых систем уравнений
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 861-871

    При моделировании методами классической молекулярной динамики поведения системы частиц используются уравнения движения в ньютоновской и гамильтоновой формулировке. При использовании уравнений Ньютона для получения координат и скоростей частиц системы, состоящей из $N$ частиц, требуется на каждом временном шаге в трехмерном случае решить $3N$ обыкновенных дифференциальных уравнений второго порядка. Традиционно для решения уравнений движения молекулярной динамики в ньютоновской формулировке используются численные схемы метода Верле. Для сохранения устойчивости численных схем Верле на достаточно больших интервалах времени приходится уменьшать шаг интегрирования. Это приводит к существенному увеличению объема вычислений. В большинстве современных пакетов программ молекулярной динамики для численного интегрирования уравнений движения используют схемы метода Верле с контролем сохранения гамильтониана (энергии системы) по времени. Для уменьшения времени вычислений при молекулярно-динамических расчетах можно использовать два дополняющих друг друга подхода. Первый основан на совершенствовании и программной оптимизации существующих пакетов программ молекулярной динамики с использованием векторизации, распараллеливания, спецпроцессоров. Второй подход основан на разработке эффективных методов численного интегрирования уравнений движения. В работе предложена процедура построения явных, неявных и симметричных симплектических численных схем с заданной точностью аппроксимации относительно шага интегрирования для решения уравнений движения молекулярной динамики в гамильтоновой форме. В основе подхода для построения предложенной в работе процедуры лежат следующие положения: гамильтонова формулировка уравнений движения, использование разложения точного решения в ряд Тейлора, использование для вывода численных схем аппарата производящих функций для сохранения геометрических свойств точного решения. Численные эксперименты показали, что полученная в работе симметричная симплектическая схема третьего порядка точности сохраняет в приближенном решении основные свойства точного решения, является более устойчивой по шагу аппроксимации и более точно сохраняет гамильтониан системы на большом интервале интегрирования, чем численные схемы метода Верле второго порядка.

    Batgerel B., Nikonov E.G., Puzynin I.V.
    Procedure for constructing of explicit, implicit and symmetric simplectic schemes for numerical solving of Hamiltonian systems of equations
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 861-871

    Equations of motion in Newtonian and Hamiltonian forms are used for classical molecular dynamics simulation of particle system time evolution. When Newton equations of motion are used for finding of particle coordinates and velocities in $N$-particle system it takes to solve $3N$ ordinary differential equations of second order at every time step. Traditionally numerical schemes of Verlet method are used for solving Newtonian equations of motion of molecular dynamics. A step of integration is necessary to decrease for Verlet numerical schemes steadiness conservation on sufficiently large time intervals. It leads to a significant increase of the volume of calculations. Numerical schemes of Verlet method with Hamiltonian conservation control (the energy of the system) at every time moment are used in the most software packages of molecular dynamics for numerical integration of equations of motion. It can be used two complement each other approaches to decrease of computational time in molecular dynamics calculations. The first of these approaches is based on enhancement and software optimization of existing software packages of molecular dynamics by using of vectorization, parallelization and special processor construction. The second one is based on the elaboration of efficient methods for numerical integration for equations of motion. A procedure for constructing of explicit, implicit and symmetric symplectic numerical schemes with given approximation accuracy in relation to integration step for solving of molecular dynamic equations of motion in Hamiltonian form is proposed in this work. The approach for construction of proposed in this work procedure is based on the following points: Hamiltonian formulation of equations of motion; usage of Taylor expansion of exact solution; usage of generating functions, for geometrical properties of exact solution conservation, in derivation of numerical schemes. Numerical experiments show that obtained in this work symmetric symplectic third-order accuracy scheme conserves basic properties of the exact solution in the approximate solution. It is more stable for approximation step and conserves Hamiltonian of the system with more accuracy at a large integration interval then second order Verlet numerical schemes.

    Просмотров за год: 11.
  8. Басалаев А.В., Клосс Ю.Ю., Любимов Д.Ю., Князев А.Н., Шувалов П.В., Щербаков Д.В., Нахапетян А.В.
    Проблемно-моделирующая среда численного решения уравнения Больцмана на кластерной архитектуре для анализа газокинетических процессов в межэлектродном зазоре термоэмиссионных преобразователей
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 219-232

    Данная работа посвящена применению метода численного решения уравнения Больцмана для решения задачи моделирования поведения радионуклидов в полости межэлектродного зазора многоэлементного электрогенерирующего канала. Анализ газокинетических процессов термоэмиссионных преобразователей может быть использован для ресурсного обоснования конструкции электрогенерирующего канала. В работе рассматриваются две конструктивные схемы канала: с одно- и двусторонним выводом газообразных продуктов деления в вакуумно-цезиевую систему. Анализ проводился с использованием двумерного уравнения переноса второго порядка точности для решения левой части и проекционного метода для решения правой части — интеграла столкновений. В ходе работы был реализован программный комплекс, позволяющий производить расчет на кластерной архитектуре за счет использования алгоритма распараллеливания левой части уравнения, результаты анализа зависимости эффективности вычисления от числа параллельных узлов представлены в работе. С использованием программного комплекса были проведены расчеты и получены данные по распределениям давлений газообразных продуктов деления в полости зазора, рассмотрены различные варианты начальных давлений и потоков, обнаружена зависимость давления радионуклидов в области коллектора от давлений цезия на концах зазора. Полученные результаты качественно подтверждаются испытаниями в петлевом канале ядерного реактора.

    Basalaev A.V., Kloss Y.Y., Lubimov D.U., Knyazev A.N., Shuvalov P.V., Sherbakov D.V., Nahapetyan A.V.
    A problem-modeling environment for the numerical solution of the Boltzmann equation on a cluster architecture for analyzing gas-kinetic processes in the interelectrode gap of thermal emission converters
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 219-232

    This paper is devoted to the application of the method of numerical solution of the Boltzmann equation for the solution of the problem of modeling the behavior of radionuclides in the cavity of the interelectric gap of a multielement electrogenerating channel. The analysis of gas-kinetic processes of thermionic converters is important for proving the design of the power-generating channel. The paper reviews two constructive schemes of the channel: with one- and two-way withdrawal of gaseous fission products into a vacuum-cesium system. The analysis uses a two-dimensional transport equation of the second-order accuracy for the solution of the left-hand side and the projection method for solving the right-hand side — the collision integral. In the course of the work, a software package was implemented that makes it possible to calculate on the cluster architecture by using the algorithm of parallelizing the left-hand side of the equation; the paper contains the results of the analysis of the dependence of the calculation efficiency on the number of parallel nodes. The paper contains calculations of data on the distribution of pressures of gaseous fission products in the gap cavity, calculations use various sets of initial pressures and flows; the dependency of the radionuclide pressure in the collector region was determined as a function of cesium pressures at the ends of the gap. The tests in the loop channel of a nuclear reactor confirm the obtained results.

    Просмотров за год: 24.
  9. Брагин М.Д., Рогов Б.В.
    Бикомпактные схемы для задач газовой динамики: обобщение на сложные расчетные области методом свободной границы
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 487-504

    Работа посвящена использованию бикомпактных схем для численного решения эволюционных уравнений гиперболического типа. Основным преимуществом схем этого класса является сочетание двух положительных свойств: пространственной аппроксимации высокого четного порядка на шаблоне, всегда занимающем одну ячейку сетки, и спектрального разрешения, лучшего по сравнению с классическими компактными конечно-разностными схемами того же порядка пространственной аппроксимации. Рассматривается одна особенность бикомпактных схем — жесткая привязка их пространственной аппроксимации к декартовым сеткам (с ячейками-параллелепипедами в трехмерном случае). Она делает затруднительным применение бикомпактных схем к решению задач в сложных расчетных областях в рамках подхода неструктурированных сеток. Предлагается решать эту проблему путем применения известных методов аппроксимации границ сложной формы и соответствующих им краевых условий на декартовых сетках. Обобщение бикомпактных схем на задачи в геометрически сложных областях проводится на примере задач газовой динамики и уравнений Эйлера. В качестве конкретного метода, позволяющего учесть на декартовых сетках влияние твердых границ произвольной формы на течение газа, выбирается метод свободной границы. Приводится краткое описание этого метода, выписываются его уравнения. Для них строятся бикомпактные схемы четвертого порядка аппроксимации по пространству с локально-одномерным расщеплением. Компенсационный поток метода свободной границы дискретизируется со вторым порядком точности. Для интегрирования по времени в получаемых схемах применяются неявный метод Эйлера и $L$-устойчивый жестко-точный трехстадийный однократно диагонально-неявный метод Рунге–Кутты третьего порядка точности. Разработанные бикомпактные схемы тестируются на трех двумерных задачах: о стационарном сверхзвуковом обтекании с числом Маха, равным трем, одного круглого цилиндра и группы изт рех круглых цилиндров, а также о нестационарном взаимодействии плоской ударной волны и круглого цилиндра в канале с плоскопараллельными стенками. Полученные результаты хорошо согласуются с результатами других работ: твердые тела физически корректно влияют на поток газа, давление в контрольных точках на поверхностях тел рассчитывается с точностью, в целом отвечающей выбранному разрешению сетки и уровню численной диссипации.

    Bragin M.D., Rogov B.V.
    Bicompact schemes for gas dynamics problems: introducing complex domains using the free boundary method
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 487-504

    This work is dedicated to application of bicompact schemes to numerical solution of evolutionary hyperbolic equations. The main advantage of this class of schemes lies in combination of two beneficial properties: the first one is spatial approximation of high even order on a stencil that always occupies only one mesh cell; the second one is spectral resolution which is better in comparison to classic compact finite-difference schemes of the same order of spatial approximation. One feature of bicompact schemes is considered: their spatial approximation is rigidly tied to Cartesian meshes (with parallelepiped-shaped cells in three-dimensional case). This feature makes rather challenging any application of bicompact schemes to problems with complex computational domains as treated in the framework of unstructured meshes. This problem is proposed to be solved using well-known methods for treating complex-shaped boundaries and their corresponding boundary conditions on Cartesian meshes. The generalization of bicompact schemes on problems in geometrically complex domains is made in case of gas dynamics problems and Euler equations. The free boundary method is chosen as a particular tool to introduce the influence of arbitrary-shaped solid boundaries on gas flows on Cartesian meshes. A brief description of this method is given, its governing equations are written down. Bicompact schemes of fourth order of approximation in space with locally one-dimensional splitting are constructed for equations of the free boundary method. Its compensation flux is discretized with second order of accuracy. Time stepping in the obtained schemes is done with the implicit Euler method and the third order accurate $L$-stable stiffly accurate three-stage singly diagonally implicit Runge–Kutta method. The designed bicompact schemes are tested on three two-dimensional problems: stationary supersonic flows with Mach number three past one circular cylinder and past three circular cylinders; the non-stationary interaction of planar shock wave with a circular cylinder in a channel with planar parallel walls. The obtained results are in a good agreement with other works: influence of solid bodies on gas flows is physically correct, pressure in control points on solid surfaces is calculated with the accuracy appropriate to the chosen mesh resolution and level of numerical dissipation.

  10. Бабаков А.В.
    Моделирование нестационарной структуры потока около спускаемого аппарата в условиях марсианской атмосферы
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 701-714

    В статье представлены результаты численного моделирования вихревого пространственного нестационарного движения среды, возникающего около боковой и донной поверхностей десантного модуля при его спуске в атмосфере Марса. Численное исследование проведено для высокоскоростного режима обтекания при различных углах атаки. Математическое моделирование осуществлено на основе модели Навье – Стокса и модели равновесных химических реакций для газового состава марсианской атмосферы. Результаты моделирования показали, что при рассматриваемых условиях движения спускаемого аппарата около его боковой и донной поверхностей реализуется нестационарное течение, имеющее ярко выраженный вихревой характер. Численные расчеты указывают на то, что в зависимости от угла атаки нестационарность и вихревой характер потока могут проявляться как на всей боковой и донной поверхностях аппарата, так и, частично, на их подветренной стороне. Для различных углов атаки приводятся картины вихревой структуры потока около поверхности спускаемого аппарата и в его ближнем следе, а также картины полей температуры и показателя адиабаты. Нестационарный характер обтекания подтверждается представленными временными зависимостями газодинамических параметров потока в различных точках поверхности аппарата. Проведенные параметрические расчеты позволили построить зависимости аэродинамических характеристик спускаемого аппарата от угла атаки. Математическое моделирование осуществляется на основе являющегося методом конечных объемов консервативного численного метода потоков, основанного на конечно-разностной записи законов сохранения аддитивных характеристик среды с использованием upwind-аппроксимаций потоковых переменных. Для моделирования возникающей при обтекании сложной вихревой структуры потока около спускаемого аппарата используются неравномерные вычислительные сетки, включающие до 30 миллионов конечных объемов с экспоненциальным сгущением к поверхности, что позволило выявить мелкомасштабные вихревые образования. Численные исследования проведены на базе разработанного комплекса программ, основанного на параллельных алгоритмах используемого численного метода и реализованного на современных многопроцессорных вычислительных системах. Приведенные в статье результаты численного моделирования получены при использовании до двух тысяч вычислительных ядер многопроцессорного комплекса.

    Babakov A.V.
    Simulation of unsteady structure of flow over descent module in the Martian atmosphere conditions
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 701-714

    The article presents the results of numerical modeling of the vortex spatial non-stationary motion of the medium arising near the lateral and bottom surfaces of the descent module during its movement in the atmosphere of Mars. The numerical study was performed for the high-speed streamline regime at various angles of attack. Mathematical modeling was carried out on the basis of the Navier – Stokes model and the model of equilibrium chemical reactions for the Martian atmosphere gas. The simulation results showed that under the considered conditions of the descent module motion, a non-stationary flow with a pronounced vortex character is realized near its lateral and bottom surfaces. Numerical calculations indicate that, depending on the angle of attack, the nonstationarity and vortex nature of the flow can manifest itself both on the entire lateral and bottom surfaces of the module, and, partially, on their leeward side. For various angles of attack, pictures of the vortex structure of the flow near the surface of the descent vehicle and in its near wake are presented, as well as pictures of the gas-dynamic parameters fields. The non-stationary nature of the flow is confirmed by the presented time dependences of the gas-dynamic parameters of the flow at various points on the module surface. The carried out parametric calculations made it possible to determine the dependence of the aerodynamic characteristics of the descent module on the angle of attack. Mathematical modeling is carried out on the basis of the conservative numerical method of fluxes, which is a finitevolume method based on a finite-difference writing of the conservation laws of additive characteristics of the medium using «upwind» approximations of stream variables. To simulate the complex vortex structure of the flow over descent module, the nonuniform computational grids are used, including up to 30 million finite volumes with exponential thickening to the surface, which made it possible to reveal small-scale vortex formations. Numerical investigations were carried out on the basis of the developed software package based on parallel algorithms of the used numerical method and implemented on modern multiprocessor computer systems. The results of numerical simulation presented in the article were obtained using up to two thousand computing cores of a multiprocessor complex.

Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.