Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'numerical integration':
Найдено статей: 79
  1. Бештоков М.Х.
    Численное решение интегро-дифференциальных уравнений влагопереноса дробного порядка с оператором Бесселя
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 353-373

    В работе рассматриваются интегро-дифференциальные уравнения влагопереноса дробного порядка с оператором Бесселя. Изучаемые уравнения содержат оператор Бесселя, два оператора дробного дифференцирования Герасимова – Капуто с разными порядками $\alpha$ и $\beta$. Рассмотрены два вида интегро-дифференциальных уравнений: в первом случае уравнение содержит нелокальный источник, т.е. интеграл от неизвестной функции по переменной интегрирования $x$, а во втором — случае интеграл по временной переменной $\tau$, обозначающий эффект памяти. Подобные задачи возникают при изучении процессов с предысторией. Для решения дифференциальных задач при различных соотношениях $\alpha$ и $\beta$ получены априорные оценки в дифференциальной форме, откуда следуют единственность и устойчивость решения по правой части и начальным данным. Для приближенного решения поставленных задач построены разностные схемы с порядком аппроксимации $O(h^2+\tau^2)$ при $\alpha=\beta$ и $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ при $\alpha\neq\beta$. Исследование единственности, устойчивости и сходимости решения проводится с помощью метода энергетических неравенств. Получены априорные оценки решений разностных задач при различных соотношениях $\alpha$ и $\beta$, откуда следуют единственность и устойчивость, а также сходимость решения разностной схемы к решению исходной дифференциальной задачи со скоростью равной порядку аппроксимации разностной схемы.

    Beshtokov M.K.
    Numerical solution of integro-differential equations of fractional moisture transfer with the Bessel operator
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 353-373

    The paper considers integro-differential equations of fractional order moisture transfer with the Bessel operator. The studied equations contain the Bessel operator, two Gerasimov – Caputo fractional differentiation operators with different orders $\alpha$ and $\beta$. Two types of integro-differential equations are considered: in the first case, the equation contains a non-local source, i.e. the integral of the unknown function over the integration variable $x$, and in the second case, the integral over the time variable τ, denoting the memory effect. Similar problems arise in the study of processes with prehistory. To solve differential problems for different ratios of $\alpha$ and $\beta$, a priori estimates in differential form are obtained, from which the uniqueness and stability of the solution with respect to the right-hand side and initial data follow. For the approximate solution of the problems posed, difference schemes are constructed with the order of approximation $O(h^2+\tau^2)$ for $\alpha=\beta$ and $O(h^2+\tau^{2-\max\{\alpha,\beta\}})$ for $\alpha\neq\beta$. The study of the uniqueness, stability and convergence of the solution is carried out using the method of energy inequalities. A priori estimates for solutions of difference problems are obtained for different ratios of $\alpha$ and $\beta$, from which the uniqueness and stability follow, as well as the convergence of the solution of the difference scheme to the solution of the original differential problem at a rate equal to the order of approximation of the difference scheme.

  2. Фиалко Н.С.
    Смешанный алгоритм расчета динамики переноса заряда в ДНК на больших временных интервалах
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 63-72

    Перенос заряда в ДНК моделируется с помощью дискретной модели Холстейна «квантовая частица + классическая цепочка сайтов + взаимодействие». Влияние температуры термостата учитывается с помощью случайной силы, действующей на классические сайты (уравнение Ланжевена). Таким образом, динамика распространения заряда вдоль цепочки описывается системой ОДУ со случайной правой частью. Для интегрирования таких систем обычно применяют алгоритмы 1 или 2 порядка. Мы разработали смешанный алгоритм, имеющий 4 порядок точности по быстрым «квантовым» переменным (заметим, что в «квантовой» подсистеме должно соблюдаться условие: «сумма вероятностей нахождения заряда на сайте постоянна по времени») и 2 порядок по медленным «классическим» переменным, на которые действует случайная сила. Алгоритм позволяет считать на бóльших временах, чем стандартные. В качестве примера приведен модельный расчет развала полярона в однородной цепочке под действием температурных флуктуаций.

    Fialko N.S.
    Mixed algorithm for modeling of charge transfer in DNA on long time intervals
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 63-72

    Charge transfer in DNA is simulated by a discrete Holstein model «quantum particle + classical site chain + interaction». Thermostat temperature is taken into account as stochastic force, which acts on classical sites (Langevin equation). Thus dynamics of charge migration along the chain is described by ODE system with stochastic right-hand side. To integrate the system numerically, algorithms of order 1 or 2 are usually applied. We developed «mixed» algorithm having 4th order of accuracy for fast «quantum» variables (note that in quantum subsystem the condition «sum of probabilities of charge being on site is time-constant» must be held), and 2nd order for slow classical variables, which are affecting by stochastic force. The algorithm allows us to calculate trajectories on longer time intervals as compared to standard algorithms. Model calculations of polaron disruption in homogeneous chain caused by temperature fluctuations are given as an example.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  3. Турченков Д.А., Турченков М.А.
    Aнализ упрощения разностных схем для уравнения Ланжевена, влияние учета корреляции приращений
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 325-338

    Исследованы пути упрощения разностных схем интегрирования уравнения Ланжевена варьированием коэффициента корреляции приращений. Для семейства численных методов получено общее аналитическое выражение для координаты и скорости. Показано, что асимптотическое значение среднего квадрата скорости для ряда разностных схем зависит от размера шага. Оценивается область применимости численных методов, а также соотношение между порядками сходимости. Выявлено, что без точного учета скоррелированности приращений разностная схема, построенная на точном решении, имеет ошибку, сравнимую с методами первого порядка.

    Turchenkov D.A., Turchenkov M.A.
    Analysis of simplifications of numerical schemes for Langevin equation, effect of variations in the correlation of augmentations
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 325-338

    The possibility to simplify the integration of Langevin equation using the variation of correlation between augmentation was researched. The analytical expression for a set of numerical schemes is presented. It’s shown that asymptotic limits for squared velocity depend on step size. The region of convergence and the convergence orders were estimated. It turned out that the incorrect correlation between increments decrease the accuracy down to the level of first-order methods for schemes based on precise solution.

    Просмотров за год: 5. Цитирований: 4 (РИНЦ).
  4. Шильков А.В., Герцев М.Н., Аристова Е.Н., Шилькова С.В.
    Методика эталонных «line-by-line» расчетов атмосферной радиации
    Компьютерные исследования и моделирование, 2012, т. 4, № 3, с. 553-562

    В работе описана методика «line-by-line» расчета тепловой радиации Земли и земной атмосферы. Расчет пространственно-углового распределения радиации производится численным интегрированием кинетического уравнения переноса излучения и уравнений для угловых моментов методом квазидиффузии. В качестве исходных данных для восстановления оптических параметров атмосферы используется банк линий молекулярного поглощения HITRAN [Rothman et al., 2009].

    Shilkov A.V., Gertsev M.N., Aristova E.N., Shilkova S.V.
    Benchmark «line-by-line» calculations of atmospheric radiation
    Computer Research and Modeling, 2012, v. 4, no. 3, pp. 553-562

    The paper presents the methodology of «line-by-line» calculations of the Earth and atmosphere thermal radiation. Intensity of radiation is computed by numerical integration of the radiative transfer kinetic equation and the system of the angular momentum equations using quasi-diffusion method. Data from HITRAN molecular spectroscopic database [Rothman et al., 2009] are used to calculate the atmosphere optical parameters.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  5. Фаворская А.В., Голубев В.И.
    О применении формулы Рэлея на основе интегральных выражений Кирхгофа к задачам георазведки
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 761-771

    В данной работе рассматриваются формулы Рэлея, полученные из интегральных формул Кирхгофа, которые в дальнейшем могут быть применены для получения миграционных изображений. Актуальность проведенных в работе исследований обусловлена распространенностью применения миграции в интересах сейсмической разведки нефти и газа. Предлагаемый подход позволит существенно повысить качество сейсмической разведки в сложных случаях, таких как вечная мерзлота и шельфовые зоны южных и северных морей. Особенностью работы является использование упругого приближения для описания динамического поведения геологической среды, в отличие от широко распространенного акустического приближения. Сложность применения системы уравнений, описывающей состояние линейно-упругой среды, для получения формул Рэлея и алгоритмов на их основе возникает из-за значительного роста количества вычислений, математической и аналитической сложности итоговых алгоритмов по сравнению со случаем акустической среды. Поэтому в промышленной сейсморазведке в настоящий момент не используют алгоритмы миграции для случая упругих волн, что создает определенные трудности, так как акустическое приближение описывает только продольные сейсмические волны в геологических средах. В данной статье представлены итоговые аналитические выражения, которые можно использовать для разработки программных комплексов, используя описание упругих сейсмических волн (продольных и поперечных), тем самым охватывая весь диапазон сейсмических волн (продольных отраженных PP-волн, продольных отраженных SP-волн, поперечных отраженных PS-волн и поперечных отраженных SS-волн). Также в работе приведены результаты сравнения численных решений, полученных на основе формул Рэлея, с численными решениями, полученными сеточно-характеристическим методом. Ценность такого сравнения обусловлена тем, что метод на основе интегралов Рэлея основан на аналитических выражениях, в то время как сеточно-характеристический метод является методом численного интегрирования решения по расчетной сетке. В проведенном сравнении рассматривались различные типы источников: модель точечного источника, широко используемого в морской и наземной сейсморазведке, и модель плоской волны, которую также иногда применяют в полевых исследованиях.

    Favorskaya A.V., Golubev V.I.
    About applying Rayleigh formula based on the Kirchhoff integral equations for the seismic exploration problems
    Computer Research and Modeling, 2017, v. 9, no. 5, pp. 761-771

    In this paper we present Rayleigh formulas obtained from Kirchhoff integral formulas, which can later be used to obtain migration images. The relevance of the studies conducted in the work is due to the widespread use of migration in the interests of seismic oil and gas seismic exploration. A special feature of the work is the use of an elastic approximation to describe the dynamic behaviour of a geological environment, in contrast to the widespread acoustic approximation. The proposed approach will significantly improve the quality of seismic exploration in complex cases, such as permafrost and shelf zones of the southern and northern seas. The complexity of applying a system of equations describing the state of a linear-elastic medium to obtain Rayleigh formulas and algorithms based on them is a significant increase in the number of computations, the mathematical and analytical complexity of the resulting algorithms in comparison with the case of an acoustic medium. Therefore in industrial seismic surveys migration algorithms for the case of elastic waves are not currently used, which creates certain difficulties, since the acoustic approximation describes only longitudinal seismic waves in geological environments. This article presents the final analytical expressions that can be used to develop software systems using the description of elastic seismic waves: longitudinal and transverse, thereby covering the entire range of seismic waves: longitudinal reflected PP-waves, longitudinal reflected SP-waves, transverse reflected PS-waves and transverse reflected SS-waves. Also, the results of comparison of numerical solutions obtained on the basis of Rayleigh formulas with numerical solutions obtained by the grid-characteristic method are presented. The value of this comparison is due to the fact that the method based on Rayleigh integrals is based on analytical expressions, while the grid-characteristic method is a method of numerical integration of solutions based on a calculated grid. In the comparison, different types of sources were considered: a point source model widely used in marine and terrestrial seismic surveying and a flat wave model, which is also sometimes used in field studies.

    Просмотров за год: 11.
  6. Муратов М.В., Петров И.Б.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

    Muratov M.V., Petrov I.B.
    Application of mathematical fracture models to simulation of exploration seismology problems by the grid-characteristic method
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1077-1082

    In real problems of exploration seismology we deal with a heterogeneity of the nature of elastic waves interaction with the surface of a fracture by the propagation through it. The fracture is a complex heterogeneous structure. In some locations the surfaces of fractures are placed some distance apart and are separated by filling fluid or emptiness, in some places we can observe the gluing of surfaces, when under the action of pressure forces the fracture surfaces are closely adjoined to each other. In addition, fractures can be classified by the nature of saturation: fluid or gas. Obviously, for such a large variety in the structure of fractures, one cannot use only one model that satisfies all cases.

    This article is concerned with description of developed mathematical fracture models which can be used for numerical solution of exploration seismology problems using the grid-characteristic method on unstructured triangular (in 2D-case) and tetrahedral (in 3D-case) meshes. The basis of the developed models is the concept of an infinitely thin fracture, whose aperture does not influence the wave processes in the fracture area. These fractures are represented by bound areas and contact boundaries with different conditions on contact and boundary surfaces. Such an approach significantly reduces the consumption of computer resources since there is no need to define the mesh inside the fracture. On the other side, it allows the fractures to be given discretely in the integration domain, therefore, one can observe qualitatively new effects, such as formation of diffractive waves and multiphase wave front due to multiple reflections between the surfaces of neighbor fractures, which cannot be observed by using effective fracture models actively used in computational seismology.

    The computational modeling of seismic waves propagation through layers of mesofractures was produced using developed fracture models. The results were compared with the results of physical modeling in problems in the same statements.

  7. Ситников С.С., Черемисин Ф.Г., Сазыкина Т.А.
    Моделирование начальной стадии истечения двухкомпонентной разреженной газовой смеси через тонкую щель в вакуум
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 747-759

    В работе рассматривается процесс формирования течения при истечении двухкомпонентной газовой смеси через тонкую щель в вакуум. Предлагается подход к моделированию течений разреженных газовых смесей в переходном режиме на основе прямого решения кинетического уравнения Больцмана, в котором для вычисления интегралов столкновения используется консервативный проекционно-интерполяционный метод. Приводятся расчетные формулы, детально описана методика вычислений применительно к течению бинарной газовой смеси. В качестве потенциала взаимодействия молекул используется потенциал Леннарда–Джонса. Разработана программно-моделирующая среда, позволяющая проводить исследование течений газовых смесей в переходном режиме на системах кластерной архитектуры. За счет использования технологий распараллеливания кода получено ускорение счета в 50–100 раз. Проведено численное моделирование нестационарного двумерного истечения бинарной аргон-неоновой газовой смеси в вакуум через тонкую щель для различных значений числа Кнудсена. Получены графики зависимости выходного потока компонентов газовой смеси от времени в процессе установления течения. Обнаружены нестационарные области сильного разделения компонентов газовой смеси, в которых отношение концентраций достигает 10 и более. Обнаруженный эффект может иметь приложения в задаче разделения газовых смесей.

    Sitnikov S.S., Tcheremissine F.G., Sazykina T.A.
    Simulation of the initial stage of a two-component rarefied gas mixture outflow through a thin slit into vacuum
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 747-759

    The paper considers the process of flow formation in an outflow of a binary gas mixture through a thin slit into vacuum. An approach to modeling the flows of rarefied gas mixtures in the transient regime is proposed based on the direct solution of the Boltzmann kinetic equation, in which the conservative projection method is used to calculate the collision integrals. Calculation formulas are provided; the calculation procedure is described in detail in relation to the flow of a binary gas mixture. The Lennard–Jones potential is used as an interaction potential of molecules. A software modeling environment has been developed that makes it possible to study the flows of gas mixtures in a transitional regime on systems of cluster architecture. Due to the use of code parallelization technologies, an acceleration of calculations by 50–100 times was obtained. Numerical simulation of a two-dimensional outflow of a binary argon-neon gas mixture from a vessel into vacuum through a thin slit is carried out for various values of the Knudsen number. The graphs of the dependence of gas mixture components output flow on time in the process of establishing the flow are obtained. Non-stationary regions of strong separation of gas mixture components, in which the molecular densities ratio reaches 10 or more, were discovered. The discovered effect can have applications in the problem of gas mixtures separation.

  8. Поляков С.В., Подрыга В.О.
    Исследование нелинейных процессов на границе раздела газового потока имет аллической стенки микроканала
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 781-794

    Работа посвящена исследованию влияния нелинейных процессов в пограничном слое на общий характер течений газа в микроканалах технических систем. Подобное исследование актуально для задач нанотехнологий. Одной из важных задач в этой сфере является анализ потоков газа в микроканалах в случае переходных и сверхзвуковых течений. Результаты этого анализа важны для техники газодинамического напыления и для синтеза новых наноматериалов. Из-за сложности реализации полномасштабных экспериментов на микро- и наномасштабах они чаще всего заменяются компьютерным моделированием. Эффективность компьютерного моделирования достигается как за счет использования новых многомасштабных моделей, так и за счет сочетания сеточных методов и методов частиц. В данной работе мы используем метод молекулярной динамики. Он был применен для исследования установления газового микротечения в металлическом канале. В качестве газовой среды был выбран азот. Металлические стенки микроканалов состояли из атомов никеля. В численных экспериментах были рассчитаны коэффициенты аккомодации на границе между течением газа и металлической стенкой. Исследование микросистемы в пограничном слое позволило сформировать многокомпонентную макроскопическую модель граничных условий. Эта модель была интегрирована в макроскопическое описание течения на основе системы квазигазодинамических уравнений. На основе такой преобразованной газодинамической модели были проведены расчеты микротечения в реальной микросистеме. Результаты были сопоставлены с классическим расчетом течения, не учитывающим нелинейные процессы в пограничном слое. Сравнение показало необходимость использования разработанной модели граничных условий и ее интеграции с классическим газодинамическим подходом.

    Polyakov S.V., Podryga V.O.
    A study of nonlinear processes at the interface between gas flow and the metal wall of a microchannel
    Computer Research and Modeling, 2022, v. 14, no. 4, pp. 781-794

    The work is devoted to the study of the influence of nonlinear processes in the boundary layer on the general nature of gas flows in microchannels of technical systems. Such a study is actually concerned with nanotechnology problems. One of the important problems in this area is the analysis of gas flows in microchannels in the case of transient and supersonic flows. The results of this analysis are important for the gas-dynamic spraying techique and for the synthesis of new nanomaterials. Due to the complexity of the implementation of full-scale experiments on micro- and nanoscale, they are most often replaced by computer simulations. The efficiency of computer simulations is achieved by both the use of new multiscale models and the combination of mesh and particle methods. In this work, we use the molecular dynamics method. It is applied to study the establishment of a gas microflow in a metal channel. Nitrogen was chosen as the gaseous medium. The metal walls of the microchannels consisted of nickel atoms. In numerical experiments, the accommodation coefficients were calculated at the boundary between the gas flow and the metal wall. The study of the microsystem in the boundary layer made it possible to form a multicomponent macroscopic model of the boundary conditions. This model was integrated into the macroscopic description of the flow based on a system of quasi-gas-dynamic equations. On the basis of such a transformed gas-dynamic model, calculations of microflow in real microsystem were carried out. The results were compared with the classical calculation of the flow, which does not take into account nonlinear processes in the boundary layer. The comparison showed the need to use the developed model of boundary conditions and its integration with the classical gas-dynamic approach.

  9. Захаров П.В.
    Эффект нелинейной супратрансмиссии в дискретных структурах: обзор
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 599-617

    В данной работе приводится обзор исследований, посвященных нелинейной супратрансмиссии и сопутствую- щим явлениям. Данный эффект заключается в передаче энергии на частотах, не поддерживаемых рассматриваемыми системами. Супратрансмиссия не зависит от интегрируемости системы, устойчива к демпфированию и различным классамгр аничных условий. Кроме того, нелинейная дискретная среда при некоторых общих условиях, накладываемых на структуру, может создавать неустойчивость, обусловленную внешним периодическим воздействием. Она является порождающимпроце ссом, лежащим в основе нелинейной супратрансмиссии. Это возможно, когда система поддерживает нелинейные моды различной природы, в частности дискретные бризеры. Тогда энергия проникает в систему, как только амплитуда внешнего гармонического возбуждения превышает максимальную амплитуду статического бризера той же частоты.

    Эффект нелинейной супратрансмиссии является важным свойством многих дискретных структур. Необходимыми условиями для его существования являются дискретность и нелинейность среды. Его проявление в системах различной природы говорит о его фундаментальности и значимости. В данном обзоре рассмотрены основные работы, затрагивающие вопрос нелинейной супратрансмисии в различных системах, преимущественно модельных.

    Многими авторскими коллективами ведутся исследования данного эффекта. В первую очередь это модели, описываемые дискретными уравнениями, в том числе sin-Гордона и дискретным нелинейным уравнением Шрёдингера. При этом эффект не является исключительно модельным и проявляет себя в натурных экспериментах в электрических цепях, в нелинейных цепочках осцилляторов, а также в метастабильных модульных метаструктурах. Происходит поэтапное усложнение моделей, что приводит к более глубокому пониманию явления супратрансмиссии, а переход к разупорядоченным и с элементами хаоса структурам позволяет говорить о более тонком проявлении данного эффекта. Численные асимптотические подходы позволяют исследовать нелинейную супратрансмиссию в сложных неинтегрируемых системах. Усложнение всевозможных осцилляторов, как физических, так и электрических, актуально для различных реальных устройств, базирующихся на подобных системах. В том числе в области нанообъектов и транспорта энергии в них посредством рассматриваемого эффекта. К таким системам относятся молекулярные, кристаллические кластеры и наноустройства. В заключении работы приводятся основные тенденции исследований нелинейной супратрансмиссии.

    Zakharov P.V.
    The effect of nonlinear supratransmission in discrete structures: a review
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 599-617

    This paper provides an overview of studies on nonlinear supratransmission and related phenomena. This effect consists in the transfer of energy at frequencies not supported by the systems under consideration. The supratransmission does not depend on the integrability of the system, it is resistant to damping and various classes of boundary conditions. In addition, a nonlinear discrete medium, under certain general conditions imposed on the structure, can create instability due to external periodic influence. This instability is the generative process underlying the nonlinear supratransmission. This is possible when the system supports nonlinear modes of various nature, in particular, discrete breathers. Then the energy penetrates into the system as soon as the amplitude of the external harmonic excitation exceeds the maximum amplitude of the static breather of the same frequency.

    The effect of nonlinear supratransmission is an important property of many discrete structures. A necessary condition for its existence is the discreteness and nonlinearity of the medium. Its manifestation in systems of various nature speaks of its fundamentality and significance. This review considers the main works that touch upon the issue of nonlinear supratransmission in various systems, mainly model ones.

    Many teams of authors are studying this effect. First of all, these are models described by discrete equations, including sin-Gordon and the discrete Schr¨odinger equation. At the same time, the effect is not exclusively model and manifests itself in full-scale experiments in electrical circuits, in nonlinear chains of oscillators, as well as in metastable modular metastructures. There is a gradual complication of models, which leads to a deeper understanding of the phenomenon of supratransmission, and the transition to disordered structures and those with elements of chaos structures allows us to talk about a more subtle manifestation of this effect. Numerical asymptotic approaches make it possible to study nonlinear supratransmission in complex nonintegrable systems. The complication of all kinds of oscillators, both physical and electrical, is relevant for various real devices based on such systems, in particular, in the field of nano-objects and energy transport in them through the considered effect. Such systems include molecular and crystalline clusters and nanodevices. In the conclusion of the paper, the main trends in the research of nonlinear supratransmission are given.

  10. Изучается приближенная математическая модель кровотока в осесимметричном кровеносном сосуде. Под таким сосудом понимается бесконечно длинный круговой цилиндр, стенки которого состоят из упругих колец. Кровь рассматривается как несжимаемая жидкость, текущая в этом цилиндре. Повышенное давление вызывает радиально-симметричное растяжение упругих колец. Следуя Дж. Лэму, кольца расположены близко друг к другу так, что жидкость между ними не протекает. Для мысленной реализации этого достаточно предположить, что кольца обтянуты непроницаемой пленкой, не обладающей упругими свойствами. Упругостью обладают лишь кольца. Рассматриваемая модель кровотока в кровеносном сосуде состоит из трех уравнений: уравнения неразрывности, закона сохранения количества движения и уравнения состояния. Рассматривается приближенная процедура сведения рассматриваемых уравнений к уравнению Кортевега – де Фриза (КдФ), которая рассмотрена Дж. Лэмом не в полной мере, лишь для установления зависимости коэффициентов уравнения КдФ от физических параметров рассматриваемой модели течения несжимаемого флюида в осесимметричном сосуде. Из уравнения КдФ стандартным переходом к бегущим волнам получаются ОДУ третьего, второго и первого порядка соответственно. В зависимости от различных случаев расположения трех стационарных решений ОДУ первого порядка стандартно получаются кноидальная волна и солитон. Основное внимание уделено неограниченному периодическому решению, которое названо нами вырожденной кноидальной волной. Математически кноидальные волны описываются эллиптическими интегралами с параметрами, определяющими амплитуды и периоды. Солитон и вырожденная кноидальная волна описываются элементарными функциями. Указан гемодинамический смысл этих видов решений. Благодаря тому, что множества решений ОДУ первого, второго и третьего порядков не совпадают, установлено, что задачу Коши для ОДУ второго и третьего порядков можно задавать во всех точках, а для ОДУ первого порядка — лишь в точках роста или убывания. Задачу Коши для ОДУ первого порядка нельзя задавать в точках экстремума благодаря нарушению условия Липшица. Численно проиллюстрировано перерождение кноидальной волны в вырожденную кноидальную волну, которая может привести к разрыву стенок сосуда. Приведенная таблица описывает два режима приближения кноидальной волны к вырожденной кноидальной волне.

    An approximate mathematical model of blood flow in an axisymmetric blood vessel is studied. Such a vessel is understood as an infinitely long circular cylinder, the walls of which consist of elastic rings. Blood is considered as an incompressible fluid flowing in this cylinder. Increased pressure causes radially symmetrical stretching of the elastic rings. Following J. Lamb, the rings are located close to each other so that liquid does not flow between them. To mentally realize this, it is enough to assume that the rings are covered with an impenetrable film that does not have elastic properties. Only rings have elasticity. The considered model of blood flow in a blood vessel consists of three equations: the continuity equation, the law of conservation of momentum and the equation of state. An approximate procedure for reducing the equations under consideration to the Korteweg – de Vries (KdV) equation is considered, which was not fully considered by J. Lamb, only to establish the dependence of the coefficients of the KdV equation on the physical parameters of the considered model of incompressible fluid flow in an axisymmetric vessel. From the KdV equation, by a standard transition to traveling waves, ODEs of the third, second and first orders are obtained, respectively. Depending on the different cases of arrangement of the three stationary solutions of the first-order ODE, a cnoidal wave and a soliton are standardly obtained. The main attention is paid to an unbounded periodic solution, which we call a degenerate cnoidal wave. Mathematically, cnoidal waves are described by elliptic integrals with parameters defining amplitudes and periods. Soliton and degenerate cnoidal wave are described by elementary functions. The hemodynamic meaning of these types of decisions is indicated. Due to the fact that the sets of solutions to first-, second- and third-order ODEs do not coincide, it has been established that the Cauchy problem for second- and third-order ODEs can be specified at all points, and for first-order ODEs only at points of growth or decrease. The Cauchy problem for a first-order ODE cannot be specified at extremum points due to the violation of the Lipschitz condition. The degeneration of the cnoidal wave into a degenerate cnoidal wave, which can lead to rupture of the vessel walls, is numerically illustrated. The table below describes two modes of approach of a cnoidal wave to a degenerate cnoidal wave.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.