Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'numerical':
Найдено статей: 437
  1. Фадеев И.Д., Аксёнов А.А., Дмитриева И.В., Низамутдинов В.Р., Пахолков В.В., Рогожкин С.А., Сазонова М.Л., Шепелев С.Ф.
    Разработка методического подхода и численное моделирование теплогидравлических процессов в промежуточном теплообменнике реактора БН
    Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 877-894

    В работе представлены результаты трехмерного численного моделирования теплогидравлических процессов в промежуточном теплообменнике перспективного реактора на быстрых нейтронах с натриевым теплоносителем (БН) с учетом разработанного методического подхода.

    Промежуточный теплообменник (ПТО) размещен в корпусе реактора и предназначен для передачи тепла от натрия первого контура, циркулирующего в межтрубном пространстве, натрию второго контура, циркулирующему внутри труб. Перед входными окнами ПТО при интегральной компоновке оборудования первого контура в реакторе БН имеет место температурное расслоение теплоносителя из-за неполного перемешивания разнотемпературных потоков на выходе из активной зоны. Внутри ПТО в районе входных и выходных окон теплообменника также реализуется сложное продольно-поперечное течение теплоносителя, которое приводит к неравномерному распределению расхода теплоносителя в межтрубном пространстве и, как следствие, к неравномерному распределению температуры и эффективности теплообмена по высоте и радиусу трубного пучка.

    С целью подтверждения заложенных в проекте теплогидравлических параметров ПТО перспективного реактора БН был разработан методический подход для трехмерного численного моделирования теплообменника, размещенного в корпусе реактора, учитывающий трехмерную картину течения натрия на входе и внутри ПТО, а также обосновывающий рекомендации для упрощения геометрии расчетной модели ПТО. Численное моделирование теплогидравлических процессов в ПТО перспективного реактора БН проводилось с использованием программного комплекса FlowVision со стандартной $k-\varepsilon$-моделью турбулентности и моделью турбулентного теплопереноса LMS. Для повышения представительности численного моделирования трубного пучка ПТО выполнены верификационные расчеты однотрубного и многотрубного теплообменников «натрий – натрий» с соответствующими конструкции ПТО геометрическими характеристиками. Для определения входных граничных условий в модели ПТО выполнен дополнительный трехмерный расчет с учетом неравномерной картины течения в верхней смесительной камере реактора. Расчетная модель ПТО была оптимизирована за счет упрощения дистанционирующих поясов и выбора секторной модели. В результате численного моделирования ПТО получены распределения скорости натрия первого контура, температуры натрия первого и второго контуров. Удовлетворительное согласование результатов расчета с проектными данными по интегральным параметрам подтвердило принятые проектные теплогидравлические характеристики ПТО перспективного реактора БН.

    Fadeev I.D., Aksenov A.A., Dmitrieva I.V., Nizamutdinov V.R., Pakholkov V.V., Rogozhkin S.A., Sazonova M.L., Shepelev S.F.
    Development of a methodological approach and numerical simulation of thermal-hydraulic processes in the intermediate heat exchanger of a BN reactor
    Computer Research and Modeling, 2023, v. 15, no. 4, pp. 877-894

    The paper presents the results of three-dimensional numerical simulation of thermal-hydraulic processes in the Intermediate Heat Exchanger of the advanced Sodium-Cooled Fast-Neutron (BN) Reactor considering a developed methodological approach.

    The Intermediate Heat Exchanger (IHX) is located in the reactor vessel and intended to transfer heat from the primary sodium circulating on the shell side to the secondary sodium circulating on the tube side. In case of an integral layout of the primary equipment in the BN reactor, upstream the IHX inlet windows there is a temperature stratification of the coolant due to incomplete mixing of different temperature flows at the core outlet. Inside the IHX, in the area of the input and output windows, a complex longitudinal and transverse flow of the coolant also takes place resulting in an uneven distribution of the coolant flow rate on the tube side and, as a consequence, in an uneven temperature distribution and heat transfer efficiency along the height and radius of the tube bundle.

    In order to confirm the thermal-hydraulic parameters of the IHX of the advanced BN reactor applied in the design, a methodological approach for three-dimensional numerical simulation of the heat exchanger located in the reactor vessel was developed, taking into account the three-dimensional sodium flow pattern at the IHX inlet and inside the IHX, as well as justifying the recommendations for simplifying the geometry of the computational model of the IHX.

    Numerical simulation of thermal-hydraulic processes in the IHX of the advanced BN reactor was carried out using the FlowVision software package with the standard $k-\varepsilon$ turbulence model and the LMS turbulent heat transfer model.

    To increase the representativeness of numerical simulation of the IHX tube bundle, verification calculations of singletube and multi-tube sodium-sodium heat exchangers were performed with the geometric characteristics corresponding to the IHX design.

    To determine the input boundary conditions in the IHX model, an additional three-dimensional calculation was performed taking into account the uneven flow pattern in the upper mixing chamber of the reactor.

    The IHX computational model was optimized by simplifying spacer belts and selecting a sector model.

    As a result of numerical simulation of the IHX, the distributions of the primary sodium velocity and primary and secondary sodium temperature were obtained. Satisfactory agreement of the calculation results with the design data on integral parameters confirmed the adopted design thermal-hydraulic characteristics of the IHX of the advanced BN reactor.

  2. Грачев В.А., Найштут Ю.С.
    Прогнозирование потери несущей способности пологих выпуклых оболочек на основе анализа нелинейных колебаний
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1189-1205

    Задачи потери устойчивости тонких упругих оболочек снова стали актуальными, так как в последние годы обнаружено несоответствие между стандартами многих стран по определению нагрузок, вызывающих потерю несущей способности пологих оболочек, и результатами экспериментов по испытаниям тонкостенных авиационных конструкций, изготовленных из высокопрочных сплавов. Основное противоречие состоит в том, что предельные внутренние напряжения, при которых наблюдается потеря устойчивости (хлопок) оболочек, оказываются меньше тех, которые предсказывает принятая теория расчета, отраженная в стандартах США и Европы. Действующие нормативные акты основаны на статической теории пологих оболочек, предложенной в 1930-е годы: в рамках нелинейной теории упругости для тонкостенных структур выделяются устойчивые решения, значительно отличающиеся от форм равновесия, присущих небольшим начальным нагрузкам. Минимальная величина нагрузки, при которой существует альтернативная форма равновесия (низшая критическая нагрузка), принималась в качестве предельно допустимой. В 1970-е годы было установлено, что такой подход оказывается неприемлемым при сложных загружениях. Подобные случаи ранее не встречались на практике, сейчас они появились на более тонких изделиях, эксплуатируемых в сложных условиях. Поэтому необходим пересмотр исходных теоретических положений по оценке несущей способности. Основой теории могут служить недавние математические результаты, установившие асимптотическую близость расчетов по двум схемам: трехмерной динамической теории упругости и динамической теории пологих выпуклых оболочек. В предлагаемой работе вначале формулируется динамическая теория пологих оболочек, которая затем сводится к одному разрешающему интегро-дифференциальному уравнению (после построения специальной функции Грина). Показано, что полученное нелинейное уравнение допускает разделение переменных, имеет множество периодических по времени решений, которые удовлетворяют уравнению Дуффинга «с мягкой пружиной». Это уравнение хорошо изучено, его численный анализ позволяет находить амплитуду и период колебаний в зависимости от свойств функции Грина. Если вызвать колебания оболочки с помощью пробной гармонической по времени нагрузки, то можно измерить перемещения точек поверхности в момент максимальной амплитуды. Предлагается экспериментальная установка, в которой генерируются резонансные колебания пробной нагрузкой, направленной по нормали к поверхности. Экспериментальные измерения перемещений оболочки, а также амплитуды и периода колебаний дают возможность рассчитать коэффициент запаса несущей способности конструкции неразрушающим методом в условиях эксплуатации.

    Grachev V.A., Nayshtut Yu.S.
    Buckling prediction for shallow convex shells based on the analysis of nonlinear oscillations
    Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1189-1205

    Buckling problems of thin elastic shells have become relevant again because of the discrepancies between the standards in many countries on how to estimate loads causing buckling of shallow shells and the results of the experiments on thinwalled aviation structures made of high-strength alloys. The main contradiction is as follows: the ultimate internal stresses at shell buckling (collapsing) turn out to be lower than the ones predicted by the adopted design theory used in the USA and European standards. The current regulations are based on the static theory of shallow shells that was put forward in the 1930s: within the nonlinear theory of elasticity for thin-walled structures there are stable solutions that significantly differ from the forms of equilibrium typical to small initial loads. The minimum load (the lowest critical load) when there is an alternative form of equilibrium was used as a maximum permissible one. In the 1970s it was recognized that this approach is unacceptable for complex loadings. Such cases were not practically relevant in the past while now they occur with thinner structures used under complex conditions. Therefore, the initial theory on bearing capacity assessments needs to be revised. The recent mathematical results that proved asymptotic proximity of the estimates based on two analyses (the three-dimensional dynamic theory of elasticity and the dynamic theory of shallow convex shells) could be used as a theory basis. This paper starts with the setting of the dynamic theory of shallow shells that comes down to one resolving integrodifferential equation (once the special Green function is constructed). It is shown that the obtained nonlinear equation allows for separation of variables and has numerous time-period solutions that meet the Duffing equation with “a soft spring”. This equation has been thoroughly studied; its numerical analysis enables finding an amplitude and an oscillation period depending on the properties of the Green function. If the shell is oscillated with the trial time-harmonic load, the movement of the surface points could be measured at the maximum amplitude. The study proposes an experimental set-up where resonance oscillations are generated with the trial load normal to the surface. The experimental measurements of the shell movements, the amplitude and the oscillation period make it possible to estimate the safety factor of the structure bearing capacity with non-destructive methods under operating conditions.

  3. Предложен алгоритм идентификации параметров плоской вихревой структуры по информации о скорости теченияв конечном (малом) наборе опорных точек. Алгоритм основан на использовании модельной системы точечных вихрей и минимизации в пространстве ее параметров целевого функционала, оценивающего близость модельного и известного наборов векторов скорости. Для численной реализации используются модифицированный метод градиентного спуска с управлением шагом, аппроксимации производных конечными разностями, аналитическое выражение для поля скорости, индуцируемое модельной системой. Проведен численный экспериментальный анализ работы алгоритма на тестовых течениях: одного и системы нескольких точечных вихрей, вихря Рэнкина и диполя Ламба. Используемые дляид ентификации векторы скорости задавались в случайно распределенных наборах опорных точек (от 3 до 200) согласно известным аналитическим выражениям для тестовых полей скорости. В результате вычислений показано: алгоритм сходится к искомому минимуму из широкой области начальных приближений; алгоритм сходится во всех случаях когда опорные точки лежат в областях, где линии тока тестовой и модельной систем топологически эквивалентны; если системы топологически не эквивалентны, то доля удачных расчетов снижается, но сходимость алгоритма также может иметь место; координаты найденных в результате сходимости алгоритма вихрей модельной системы близки к центрам вихрей тестовых конфигураций, а во многих случаях и значения их интенсивностей; сходимость алгоритма в большей степени зависит от расположения, чем от количества используемых при идентификации векторов. Результаты исследования позволяют рекомендовать предложенный алгоритм для анализа плоских вихревых структур, у которых линии тока топологически близки траекториям частиц в поле скорости систем точечных вихрей.

    An algorithm is proposed to identify parameters of a 2D vortex structure used on information about the flow velocity at a finite (small) set of reference points. The approach is based on using a set of point vortices as a model system and minimizing a functional that compares the model and known sets of velocity vectors in the space of model parameters. For numerical implementation, the method of gradient descent with step size control, approximation of derivatives by finite differences, and the analytical expression of the velocity field induced by the point vortex model are used. An experimental analysis of the operation of the algorithm on test flows is carried out: one and a system of several point vortices, a Rankine vortex, and a Lamb dipole. According to the velocity fields of test flows, the velocity vectors utilized for identification were arranged in a randomly distributed set of reference points (from 3 to 200 pieces). Using the computations, it was determined that: the algorithm converges to the minimum from a wide range of initial approximations; the algorithm converges in all cases when the reference points are located in areas where the streamlines of the test and model systems are topologically equivalent; if the streamlines of the systems are not topologically equivalent, then the percentage of successful calculations decreases, but convergence can also take place; when the method converges, the coordinates of the vortices of the model system are close to the centers of the vortices of the test configurations, and in many cases, the values of their circulations also; con-vergence depends more on location than on the number of vectors used for identification. The results of the study allow us to recommend the proposed algorithm for identifying 2D vortex structures whose streamlines are topologically close to systems of point vortices.

  4. Дискретизация задач по методу гидродинамики сглаженных частиц (SPH) предполагает присутствие в решении нескольких констант — параметров дискретизации. Среди них особо следует отметить модельную скорость звука $c_0$, которая связывает мгновенную плотность в SPH-частице с возникающим давлением через замыкающее уравнение состояния.

    В работе изложен подход к точному определению необходимого значения модельной скорости звука, имеющий в своей основе анализ изменения плотностей в SPH-частицах при их относительном смещении. Примером движения сплошной среды принята задача о плоском сдвиговом течении; объектом анализа является функция относительного уплотнения $\varepsilon_\rho$ в SPH-частице, определяемая формой ядра сглаживания. Идеальный плоскопараллельный относительный сдвиг частиц в области сглаживания определяет периодическое изменение их плотностей. Исследование функций $\varepsilon_\rho$, получаемых от использования различных ядер сглаживания в аппроксимации плотности с учетом такого сдвига, позволило установить пульсационный характер возникновения давлений в частицах. Кроме того, определен случай расположения соседей в области сглаживания, обеспечивающий максимум уплотнения в частице.

    Сопоставление функций $\varepsilon_\rho$ с SPH-аппроксимацией уравнения движения позволило связать параметр дискретизации $c_0$ с формой ядра сглаживания и прочими параметрами дискретного аналога задачи, в том числе коэффициентом искусственной диссипации. В результате сформулировано уравнение, обеспечивающее нахождение необходимого и достаточного для решения значения модельной скорости звука. Для трех представителей ядер сглаживания приведены выражения корня $c_0$ такого уравнения, упрощенные из полиномов до числовых коэффициентов при параметрах рассматриваемой задачи.

    Reshetnikova O.V.
    The model sound speed determination for the plane shear fluid flow problem solving by the SPH method
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 339-351

    The problem discrete statement by the smoothed particle hydrodynamics method (SPH) include a discretization constants parameters set. Of them particular note is the model sound speed $c_0$, which relates the SPH-particle instantaneous density to the resulting pressure through the equation of state.

    The paper describes an approach to the exact determination of the model sound speed required value. It is on the analysis based, how SPH-particle density changes with their relative shift. An example of the continuous medium motion taken the plane shear flow problem; the analysis object is the relative compaction function $\varepsilon_\rho$ in the SPH-particle. For various smoothing kernels was research the functions of $\varepsilon_\rho$, that allowed the pulsating nature of the pressures occurrence in particles to establish. Also the neighbors uniform distribution in the smoothing domain was determined, at which shaping the maximum of compaction in the particle.

    Through comparison the function $\varepsilon_\rho$ with the SPH-approximation of motion equation is defined associate the discretization parameter $c_0$ with the smoothing kernel shape and other problem parameters. As a result, an equation is formulated that the necessary and sufficient model sound speed value provides finding. For such equation the expressions of root $c_0$ are given for three different smoothing kernels, that simplified from polynomials to numerical coefficients for the plane shear flow problem parameters.

  5. Литвинов В.Н., Чистяков А.Е., Никитина А.В., Атаян А.М., Кузнецова И.Ю.
    Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672

    Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.

    Litvinov V.N., Chistyakov A.E., Nikitina A.V., Atayan A.M., Kuznetsova I.Y.
    Mathematical modeling of hydrodynamics problems of the Azov Sea on a multiprocessor computer system
    Computer Research and Modeling, 2024, v. 16, no. 3, pp. 647-672

    The article is devoted to modeling the shallow water hydrodynamic processes using the example of the Azov Sea. The article presents a mathematical model of the hydrodynamics of a shallow water body, which allows one to calculate three-dimensional fields of the velocity vector of movement of the aquatic environment. Application of regularizers according to B.N.Chetverushkin in the continuity equation led to a change in the method of calculating the pressure field, based on solving the wave equation. A discrete finite-difference scheme has been constructed for calculating pressure in an area whose linear vertical dimensions are significantly smaller than those in horizontal coordinate directions, which is typical for the geometry of shallow water bodies. The method and algorithm for solving grid equations with a tridiagonal preconditioner are described. The proposed method is used to solve grid equations that arise when calculating pressure for the three-dimensional problem of hydrodynamics of the Azov Sea. It is shown that the proposed method converges faster than the modified alternating triangular method. A parallel implementation of the proposed method for solving grid equations is presented and theoretical and practical estimates of the acceleration of the algorithm are carried out taking into account the latency time of the computing system. The results of computational experiments for solving problems of hydrodynamics of the Sea of Azov using the hybrid MPI + OpenMP technology are presented. The developed models and algorithms were used to reconstruct the environmental disaster that occurred in the Sea of Azov in 2001 and to solve the problem of the movement of the aquatic environment in estuary areas. Numerical experiments were carried out on the K-60 hybrid computing cluster of the Keldysh Institute of Applied Mathematics of Russian Academy of Sciences.

  6. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

    Doludenko A.N., Kulikov Y.M., Saveliev A.S.
    Сhaotic flow evolution arising in a body force field
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912

    This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.

  7. Назаров Ф.Х.
    Численное исследование высокоскоростных слоев смешения на основе двухжидкостной модели турбулентности
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1125-1142

    Данная работа посвящена численному исследованию высокоскоростных слоев смешения сжимаемых потоков. Рассматриваемая задача имеет широкий спектр применения в практических задачах и, несмотря на кажущуюся простоту, является достаточно сложной в плане моделирования, потому что в слое смешения в результате неустойчивости тангенциального разрыва скоростей поток от ламинарного течения переходит к турбулентному режиму. Поэтому полученные численные результаты рассмотренной задачи сильно зависят от адекватности используемых моделей турбулентности. В представленной работе данная задача исследуется на основе двухжидкостного подхода к проблеме турбулентности. Данный подход возник сравнительно недавно и достаточно быстро развивается. Главное преимущество двухжидкостного подхода — в том, что он ведет к замкнутой системе уравнений, тогда как известно, что давний подход Рейнольдса ведет к незамкнутой системе. В работе представлены суть двухжидкостного подхода для моделирования турбулентной сжимаемой среды и методика численной реализации предлагаемой модели. Для получения стационарного решения поставленной задачи применен метод установления и использована теория пограничного слоя Прандтля, которая ведет к упрощенной системе уравнений. В рассматриваемой задаче происходит смешение высокоскоростных потоков. Следовательно, необходимо моделировать также перенос тепла и давление нельзя считать постоянным, как это делается для несжимаемых потоков. При численной реализации конвективные члены в гидродинамических уравнениях аппроксимировались против потока вторым порядка точности в явном виде, а диффузионные члены в правых частях уравнений аппроксимировались центральной разностью в неявном виде. Для реализации полученных уравнений использовался метод прогонки. Для коррекции скорости через давления использован метод SIMPLE. В работе проведено исследование двухжидкостной модели турбулентности при различных начальных возмущениях потока. Полученные численные результаты показали, что хорошее соответствие с известными опытными данными наблюдается при интенсивности турбулентности на входе $0,1 < I < 1 \%$. Для демонстрации эффективности предлагаемой модели турбулентности представлены также данные известных экспериментов, а также результаты моделей $k − kL + J$ и LES. Показано, что двухжидкостная модель по точности не уступает известным современным моделям, а по затрате вычислительных ресурсов является более экономичной.

    Nazarov F.K.
    Numerical study of high-speed mixing layers based on a two-fluid turbulence model
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1125-1142

    This work is devoted to the numerical study of high-speed mixing layers of compressible flows. The problem under consideration has a wide range of applications in practical tasks and, despite its apparent simplicity, is quite complex in terms of modeling. Because in the mixing layer, as a result of the instability of the tangential discontinuity of velocities, the flow passes from laminar flow to turbulent mode. Therefore, the obtained numerical results of the considered problem strongly depend on the adequacy of the used turbulence models. In the presented work, this problem is studied based on the two-fluid approach to the problem of turbulence. This approach has arisen relatively recently and is developing quite rapidly. The main advantage of the two-fluid approach is that it leads to a closed system of equations, when, as is known, the long-standing Reynolds approach leads to an open system of equations. The paper presents the essence of the two-fluid approach for modeling a turbulent compressible medium and the methodology for numerical implementation of the proposed model. To obtain a stationary solution, the relaxation method and Prandtl boundary layer theory were applied, resulting in a simplified system of equations. In the considered problem, high-speed flows are mixed. Therefore, it is also necessary to model heat transfer, and the pressure cannot be considered constant, as is done for incompressible flows. In the numerical implementation, the convective terms in the hydrodynamic equations were approximated by the upwind scheme with the second order of accuracy in explicit form, and the diffusion terms in the right-hand sides of the equations were approximated by the central difference in implicit form. The sweep method was used to implement the obtained equations. The SIMPLE method was used to correct the velocity through the pressure. The paper investigates a two-liquid turbulence model with different initial flow turbulence intensities. The obtained numerical results showed that good agreement with the known experimental data is observed at the inlet turbulence intensity of $0.1 < I < 1 \%$. Data from known experiments, as well as the results of the $k − kL + J$ and LES models, are presented to demonstrate the effectiveness of the proposed turbulence model. It is demonstrated that the two-liquid model is as accurate as known modern models and more efficient in terms of computing resources.

  8. Елизарова Т.Г., Жериков А.В., Калачинская И.С.
    Численное решение квазигидродинамических уравнений на неструктурированных треугольных сетках
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 181-188

    Предложен метод численного решения квазигидродинамических уравнений на неструктурированных треугольных сетках. В качестве сетки была использована триангуляция Делоне. Система уравнений аппроксимировалась с помощью метода конечных объемов. Граница области аппроксимировалась прямоугольными треугольниками. На основе данного алгоритма была разработана программа и проведена серия тестов, результаты которых показали, что данный алгоритм дает результаты, которые хорошо совпадают с результатами расчетов, выполненных на регулярных сетках.

    Elizarova T.G., Zherikov A.V., Kalachinskaya I.S.
    Numerical solution of quasi-hydrodynamic equations on non-structured triangle mesh
    Computer Research and Modeling, 2009, v. 1, no. 2, pp. 181-188

    A new flow modeling method on unstructured grid was proposed. As a basis system this method used quasi-hydro-dynamic equations. The finite volume method vas used for solving these equations. The Delaunay triangulation was used for constructing mesh. This proposed method was tested in modeling of incompressible flow through a channel with complex profile. The acquired results showed that the proposed method could be used in flow modeling in unstructured grid.

    Просмотров за год: 1.
  9. Соболев Е.В., Тихонов Д.А.
    Численное исследование сингулярности интегральных уравнений теории жидкостей в приближении RISM
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 51-62

    Предложена схема построения параметрического портрета интегральных уравнений теории жидкостей в приближении RISM. Для нахождения всех связных решений использован метод продолжения по параметру. Получены уравнения для молекулярных жидкостей, сводимых по соображениям симметрии к модели двуцентровых молекул. Для преодоления особых точек использован переход к зависимости уравнений RISM от обратной сжимаемости. С помощью предложенного метода проведены численные расчеты изотерм обратной сжимаемости метана для трех уравнений замыкания. В случае частично линеаризованного гиперцепного замыкания не обнаружено бифуркации решений. Для других замыканий получены бифуркации решений и обнаружено поведение, которое не характерно для модели простых жидкостей. В случае замыкания Перкуса-Йевика в области низких температур получены нефизические решения. Для гиперцепного замыкания в области температур выше критической точки получена дополнительная ветвь решений с изломом в точке бифуркации.

    Sobolev E.V., Tikhonov D.A.
    Numerical analyses of singularity in the integral equation of theory of liquids in the RISM approximation
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 51-62

    An approach to evaluation of a parametric portrait of integral equations of the theory of liquids in the RISM approximation was proposed. To obtain all associated solutions the continuation method was used. The equations reduced to a two-centered molecule model for symmetry reasons were deduced for molecular liquids. For molecular liquids, some equations were obtained which could be reduced, for symmetry reasons, to a two-center molecular model. To avoid critical points we changed the dependence of RISM-equations on reverse compressibility. The suggested method was used to perform numerical computations of methane reverse compressibility isotherms with three closures. No bifurcation of solutions was observed in the case of the partially linearized hypernetted chain closure. For other closures bifurcations of solutions were obtained and the model behavior nontypical for simple liquids was observed. In the case of Percus-Yevick closure nonphysical solutions were obtained at low temperature and density. Additional solution branch with a kink in the bifurcation point was obtained in the case of hypernetted chain closure at temperature above the critical point.

    Просмотров за год: 4.
  10. Самарин В.В.
    Математическое моделирование двуядерных систем при низкоэнергетических ядерных реакциях
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 385-392

    Для квантового описания поведения двуядерных систем на начальной стадии околобарьерного слияния тяжелых ядер использованы численные методы нахождения коллективных и одночастичных состояний. Коллективные возбужденные состояния в таких системах представляют собой согласованные колебания поверхностей сферических ядер. Одночастичные состояния внешних нейтронов аналогичны состояниям валентных электронов двухатомных молекул.

    Samarin V.V.
    Mathematical modeling of dinuclear systems in low energy nuclear reactions
    Computer Research and Modeling, 2010, v. 2, no. 4, pp. 385-392

    Numerical methods of obtaining collective and one-particle states were used for the quantum description of two-nuclear systems behavior at the initial stage of near-barrier heavy nuclei fusion. The collective exited states in such systems represent concordant oscillations of surfaces of spherical nuclei. The one-particle states of the external neutrons are similar to the states of valence electrons of diatomic molecules.

    Просмотров за год: 2.
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.