Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'neural network':
Найдено статей: 41
  1. Ососков Г.А., Бакина О.В., Баранов Д.А., Гончаров П.В., Денисенко И.И., Жемчугов А.С., Нефедов Ю.А., Нечаевский А.В., Никольская А.Н., Щавелев Е.М., Ван Л., Сунь Ш., Чжан Я.
    Нейросетевая реконструкция треков частиц для внутреннего CGEM-детектораэк сперимента BESIII
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1361-1381

    Реконструкция траекторий заряженных частиц в трековых детекторах является ключевой проблемой анализа экспериментальных данных для физики высоких энергий и ядерной физики. Поток данных в современных экспериментах растет день ото дня, и традиционные методы трекинга уже не в состоянии соответствовать этим объемам данных по скорости обработки. Для решения этой проблемы нами были разработаны два нейросетевых алгоритма, использующих методы глубокого обучения, для локальной (каждый трек в отдельности) и глобальной (все треки в событии) реконструкции треков применительно к данным трекового GEM-детектора эксперимента BM@N ОИЯИ. Преимущество глубоких нейронных сетей обусловлено их способностью к обнаружению скрытых нелинейных зависимостей в данных и возможностью параллельного выполнения операций линейной алгебры, лежащих в их основе.

    В данной статье приведено описание исследования по обобщению этих алгоритмов и их адаптации к применению для внутреннего поддетектора CGEM (BESIII ИФВЭ, Пекин). Нейросетевая модель RDGraphNet для глобальной реконструкции треков, разработанная на основе реверсного орграфа, успешно адаптирована. После обучения на модельных данных тестирование показало обнадеживающие результаты: для распознавания треков полнота (recall) составила 98% и точность (precision) — 86%. Однако адаптация «локальной» нейросетевой модели TrackNETv2 потребовала учета специфики цилиндрического детектора CGEM (BESIII), состоящего всего из трех детектирующих слоев, и разработки дополнительного нейроклассификатора для отсева ложных треков. Полученная программа TrackNETv2.1 протестирована в отладочном режиме. Значение полноты на первом этапе обработки составило 99%. После применения классификатора точность составила 77%, при незначительном снижении показателя полноты до 94%. Данные результаты предполагают дальнейшее совершенствование модели локального трекинга.

    Ososkov G.A., Bakina O.V., Baranov D.A., Goncharov P.V., Denisenko I.I., Zhemchugov A.S., Nefedov Y.A., Nechaevskiy A.V., Nikolskaya A.N., Shchavelev E.M., Wang L., Sun S., Zhang Y.
    Tracking on the BESIII CGEM inner detector using deep learning
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1361-1381

    The reconstruction of charged particle trajectories in tracking detectors is a key problem in the analysis of experimental data for high energy and nuclear physics.

    The amount of data in modern experiments is so large that classical tracking methods such as Kalman filter can not process them fast enough. To solve this problem, we have developed two neural network algorithms of track recognition, based on deep learning architectures, for local (track by track) and global (all tracks in an event) tracking in the GEM tracker of the BM@N experiment at JINR (Dubna). The advantage of deep neural networks is the ability to detect hidden nonlinear dependencies in data and the capability of parallel execution of underlying linear algebra operations.

    In this work we generalize these algorithms to the cylindrical GEM inner tracker of BESIII experiment. The neural network model RDGraphNet for global track finding, based on the reverse directed graph, has been successfully adapted. After training on Monte Carlo data, testing showed encouraging results: recall of 98% and precision of 86% for track finding.

    The local neural network model TrackNETv2 was also adapted to BESIII CGEM successfully. Since the tracker has only three detecting layers, an additional neuro-classifier to filter out false tracks have been introduced. Preliminary tests demonstrated the recall value at the first stage of 99%. After applying the neuro-classifier, the precision was 77% with a slight decrease of the recall to 94%. This result can be improved after the further model optimization.

  2. Минниханов Р.Н., Аникин И.В., Дагаева М.В., Аслямов Т.И., Большаков Т.Е.
    Подходы к обработке изображений в системе поддержки принятия решений центра автоматизированной фиксации административных правонарушений дорожного движения
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 405-415

    В статье предлагается ряд подходов к обработке изображений в системе поддержки принятия решений (СППР) центра автоматизированной фиксации административных правонарушений дорожного движения (ЦАФАП). Основной задачей данной СППР является помощь человеку-оператору в получении точной информации о государственном регистрационном знаке (ГРЗ) и модели транспортного средства (ТС) на основании изображений, полученных с комплексов фотовидеофиксации (ФВФ). В статье предложены подходы к распознаванию ГРЗ и марки/модели ТС на изображении, основанные на современных нейросетевых моделях. Для распознавания ГРЗ использована нейросетевая модель LPRNet с дополнительно введенным Spatial Transformer Layer для предобработки изображения. Для автоматического определения марки/модели ТС на изображении использована нейросетевая архитектура ResNeXt-101-32x8d. Предложен подход к формированию обучающей выборки для нейросетевой модели распознавания ГРЗ, основанный на методах компьютерного зрения и алгоритмах машинного обучения. В данном подходе использован алгоритм SIFT для нахождения ключевых точек изображения с ГРЗ и вычисления их дескрипторов, а для удаления точек-выбросов использован алгоритм DBSCAN. Точность распознавания ГРЗ на тестовой выборке составила 96 %. Предложен подход к повышению производительности процедур дообучения и распознавания марки/модели ТС, основанный на использовании новой архитектуры сверточной нейронной сети с «заморозкой» весовых коэффициентов сверточных слоев, дополнительным сверточным слоем распараллеливания процесса классификации и множеством бинарных классификаторов на выходе. Применение новой архитектуры позволило на несколько порядков уменьшить время дообучения нейросетевой модели распознавания марки/модели ТС с итоговой точностью классификации, близкой к 99 %. Предложенные подходы были апробированы и внедрены в СППР ЦАФАП Республики Татарстан.

    Minnikhanov R.N., Anikin I.V., Dagaeva M.V., Asliamov T.I., Bolshakov T.E.
    Approaches for image processing in the decision support system of the center for automated recording of administrative offenses of the road traffic
    Computer Research and Modeling, 2021, v. 13, no. 2, pp. 405-415

    We suggested some approaches for solving image processing tasks in the decision support system (DSS) of the Center for Automated Recording of Administrative Offenses of the Road Traffic (CARAO). The main task of this system is to assist the operator in obtaining accurate information about the vehicle registration plate and the vehicle brand/model based on images obtained from the photo and video recording systems. We suggested the approach for vehicle registration plate recognition and brand/model classification on the images based on modern neural network models. LPRNet neural network model supplemented by Spatial Transformer Layer was used to recognize the vehicle registration plate. The ResNeXt-101-32x8d neural network model was used to classify for vehicle brand/model. We suggested the approach to construct the training set for the neural network of vehicle registration plate recognition. The approach is based on computer vision methods and machine learning algorithms. The SIFT algorithm was used to detect and describe local features on images with the vehicle registration plate. DBSCAN clustering was used to detect and delete outliers in such local features. The accuracy of vehicle registration plate recognition was 96% on the testing set. We suggested the approach to improve the efficiency of using the ResNeXt-101-32x8d model at additional training and classification stages. The approach is based on the new architecture of convolutional neural networks with “freezing” weight coefficients of convolutional layers, an additional convolutional layer for parallelizing the classification process, and a set of binary classifiers at the output. This approach significantly reduced the time of additional training of neural network when new vehicle brand/model classification was needed. The final accuracy of vehicle brand/model classification was 99% on the testing set. The proposed approaches were tested and implemented in the DSS of the CARAO of the Republic of Tatarstan.

  3. Терехин А.Т., Будилова Е.В., Карпенко М.П., Качалова Л.М., Чмыхова Е.В.
    Функция Ляпунова как инструмент исследования когнитивных и регуляторных процессов организма
    Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 449-456

    Когнитивные и регуляторные процессы в организме обеспечиваются функционированием нескольких различных сетевых систем — нервной, эндокринной, иммунной, генной, которые, однако, тесно связаны между собой и образуют единую нейрогеногуморальную когнитивно-регуляторную динамическую сеть организма. Дается обзор работ, показывающих, что с этой сетью можно связать соответствующую ей функцию Ляпунова (функцию энергии, потенциальную функцию), анализ которой, в силу ее геометрической наглядности, позволяет легко обнаружить ряд общих закономерностей, касающихся когнитивной и регуляторной деятельности организма.

    Terekhin A.T., Budilova E.V., Karpenko M.P., Kachalova L.M., Chmyhova E.V.
    Lyapunov function as a tool for the study of cognitive and regulatory processes in organism
    Computer Research and Modeling, 2009, v. 1, no. 4, pp. 449-456

    Cognitive and regulatory processes in organism are ensured by the functioning of several different network systems — neural, endocrine, immune, and gene ones. These systems are, however, closely related and form a single integrated neurogenohumoral cognitive-regulatory dynamic system of organism. A review of publications is given which shows that it is possible to associate with this dynamic system a corresponding Lyapunov function (energy function, potential function) and that analyzing this function allows, due to its geometrical insight, to easily discover a set of general properties of cognitive and regulatory functioning of organism.

    Просмотров за год: 4. Цитирований: 5 (РИНЦ).
  4. Суворов Н.В., Шлеймович М.П.
    Математическая модель биометрической системы распознавания по радужной оболочке глаза
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639

    Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.

    Suvorov N.V., Shleymovich M.P.
    Mathematical model of the biometric iris recognition system
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639

    Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.

  5. Гребенкин И.В., Алексеенко А.Е., Гайворонский Н.А., Игнатов М.Г., Казённов А.М., Козаков Д.В., Кулагин А.П., Холодов Я.А.
    Применение ансамбля нейросетей и методов статистической механики для предсказания связывания пептида с главным комплексом гистосовместимости
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1383-1395

    Белки главного комплекса гистосовместимости (ГКГС) играют ключевую роль в работе адаптивной иммунной системы, и определение связывающихся с ними пептидов — важный шаг в разработке вакцин и понимании механизмов аутоиммунных заболеваний. На сегодняшний день существует ряд методов для предсказания связывания определенной аллели ГКГС с пептидом. Одним из лучших таких методов является NetMHCpan-4.0, основанный на ансамбле искусственных нейронных сетей. В данной работе представлена методология качественного улучшения архитектуры нейронной сети, лежащей в основе NetMHCpan-4.0. Предлагаемый метод использует технику построения ансамбля и добавляет в качестве входных данных оценку модели Поттса, взятой из статистической механики и являющейся обобщением модели Изинга. В общем случае модельо тражает взаимодействие спинов в кристаллической решетке. Применительно к задаче белок-пептидного взаимодействия вместо спинов используются типы аминокислот, находящихся в кармане связывания. В предлагаемом методе модель Поттса используется для более всестороннего представления физической природы взаимодействия полипептидных цепей, входящих в состав комплекса. Для оценки взаимодействия комплекса «ГКГС + пептид» нами используется двумерная модель Поттса с 20 состояниями (соответствующими основным аминокислотам). Решая обратную задачу с использованием данных об экспериментально подтвержденных взаимодействующих парах, мы получаем значения параметров модели Поттса, которые затем применяем для оценки новой пары «ГКГС + пептид», и дополняем этим значением входные данные нейронной сети. Такой подход, в сочетании с техникой построения ансамбля, позволяет улучшитьт очность предсказания, по метрике положительной прогностической значимости (PPV), по сравнению с базовой моделью.

    Grebenkin I.V., Alekseenko A.E., Gaivoronskiy N.A., Ignatov M.G., Kazennov A.M., Kozakov D.V., Kulagin A.P., Kholodov Y.A.
    Ensemble building and statistical mechanics methods for MHC-peptide binding prediction
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1383-1395

    The proteins of the Major Histocompatibility Complex (MHC) play a key role in the functioning of the adaptive immune system, and the identification of peptides that bind to them is an important step in the development of vaccines and understanding the mechanisms of autoimmune diseases. Today, there are a number of methods for predicting the binding of a particular MHC allele to a peptide. One of the best such methods is NetMHCpan-4.0, which is based on an ensemble of artificial neural networks. This paper presents a methodology for qualitatively improving the underlying neural network underlying NetMHCpan-4.0. The proposed method uses the ensemble construction technique and adds as input an estimate of the Potts model taken from static mechanics, which is a generalization of the Ising model. In the general case, the model reflects the interaction of spins in the crystal lattice. Within the framework of the proposed method, the model is used to better represent the physical nature of the interaction of proteins included in the complex. To assess the interaction of the MHC + peptide complex, we use a two-dimensional Potts model with 20 states (corresponding to basic amino acids). Solving the inverse problem using data on experimentally confirmed interacting pairs, we obtain the values of the parameters of the Potts model, which we then use to evaluate a new pair of MHC + peptide, and supplement this value with the input data of the neural network. This approach, combined with the ensemble construction technique, allows for improved prediction accuracy, in terms of the positive predictive value (PPV) metric, compared to the baseline model.

  6. В данной статье решается задача разработки технологии сбора исходных данных для построения моделей оценки функционального состояния человека. Данное состояние оценивается по зрачковой реакции человека на изменение освещенности на основе метода пупиллометрии. Данный метод предполагает сбор и анализ исходных данных (пупиллограмм), представленных в виде временных рядов, характеризующих динамику изменения зрачков человека на световое импульсное воздействие. Анализируются недостатки традиционного подхода к сбору исходных данных с применением методов компьютерного зрения и сглаживания временных рядов. Акцентируется внимание на важности качества исходных данных для построения адекватных математических моделей. Актуализируется необходимость ручной разметки окружностей радужной оболочки глаза и зрачка для повышения точности и качества исходных данных. Описываются этапы предложенной технологии сбора исходных данных. Приводится пример полученной пупиллограммы, имеющей гладкую форму и не содержащей выбросы, шумы, аномалии и пропущенные значения. На основе представленной технологии разработан программно-аппаратный комплекс, представляющий собой совокупность специального программного обеспечения, имеющего два основных модуля, и аппаратной части, реализованной на базе микрокомпьютера Raspberry Pi 4 Model B, с периферийным оборудованием, реализующим заданный функционал. Для оценки эффективности разработанной технологии используются модели однослойного персептрона и коллектива нейронных сетей, для построения которых использовались исходные данные о функциональном состоянии утомления человека. Проведенные исследования показали, что применение ручной разметки исходных данных (по сравнению с автоматическими методами компьютерного зрения) приводит к снижению числа ошибок 1-го и 2-года рода и, соответственно, повышению точности оценки функционального состояния человека. Таким образом, представленная технология сбора исходных данных может эффективно использоваться для построения адекватных моделей оценки функционального состояния человека по зрачковой реакции на изменение освещенности. Использование таких моделей актуально в решении отдельных задач обеспечения транспортной безопасности, в частности мониторинга функционального состояния водителей.

    This article solves the problem of developing a technology for collecting initial data for building models for assessing the functional state of a person. This condition is assessed by the pupil response of a person to a change in illumination based on the pupillometry method. This method involves the collection and analysis of initial data (pupillograms), presented in the form of time series characterizing the dynamics of changes in the human pupils to a light impulse effect. The drawbacks of the traditional approach to the collection of initial data using the methods of computer vision and smoothing of time series are analyzed. Attention is focused on the importance of the quality of the initial data for the construction of adequate mathematical models. The need for manual marking of the iris and pupil circles is updated to improve the accuracy and quality of the initial data. The stages of the proposed technology for collecting initial data are described. An example of the obtained pupillogram is given, which has a smooth shape and does not contain outliers, noise, anomalies and missing values. Based on the presented technology, a software and hardware complex has been developed, which is a collection of special software with two main modules, and hardware implemented on the basis of a Raspberry Pi 4 Model B microcomputer, with peripheral equipment that implements the specified functionality. To evaluate the effectiveness of the developed technology, models of a single-layer perspetron and a collective of neural networks are used, for the construction of which the initial data on the functional state of intoxication of a person were used. The studies have shown that the use of manual marking of the initial data (in comparison with automatic methods of computer vision) leads to a decrease in the number of errors of the 1st and 2nd years of the kind and, accordingly, to an increase in the accuracy of assessing the functional state of a person. Thus, the presented technology for collecting initial data can be effectively used to build adequate models for assessing the functional state of a person by pupillary response to changes in illumination. The use of such models is relevant in solving individual problems of ensuring transport security, in particular, monitoring the functional state of drivers.

  7. Классические численные методы, применяемые для предсказания эволюции гидродинамических систем, предъявляют высокие требования к вычислительным ресурсам и накладывают ограничения на число вариантов геолого-гидродинамических моделей, расчет эволюции состояний которых возможно осуществлять в практических условиях. Одним из перспективных подходов к разработке эвристических оценок, которые могли бы ускорить рассмотрение вариантов гидродинамических моделей, является имитационное моделирование на основе обучающих данных. В рамках этого подхода методы машинного обучения используются для настройки весов искусственной нейронной сети (ИНС), предсказывающей состояние физической системы в заданный момент времени на основе начальных условий. В данной статье описаны оригинальная архитектура ИНС и специфическая процедура обучения, формирующие эвристическую модель двухфазного течения в гетерогенной пористой среде. Основанная на ИНС модель с приемлемой точностью предсказывает состояния расчетных блоков моделируемой системы в произвольный момент времени (с известными ограничениями) на основе только начальных условий: свойств гетерогенной проницаемости среды и размещения источников и стоков. Предложенная модель требует на порядки меньшего процессорного времени в сравнении с классическим численным методом, который послужил критерием оценки эффективности обученной модели. Архитектура ИНС включает ряд подсетей, обучаемых в различных комбинациях на нескольких наборах обучающих данных. Для обучения ИНС в рамках многоэтапной процедуры применены техники состязательного обучения и переноса весов из обученной модели.

    Umavovskiy A.V.
    Data-driven simulation of a two-phase flow in heterogenous porous media
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 779-792

    The numerical methods used to simulate the evolution of hydrodynamic systems require the considerable use of computational resources thus limiting the number of possible simulations. The data-driven simulation technique is one promising approach to the development of heuristic models, which may speed up the study of such models. In this approach, machine learning methods are used to tune the weights of an artificial neural network that predicts the state of a physical system at a given point in time based on initial conditions. This article describes an original neural network architecture and a novel multi-stage training procedure which create a heuristic model of a two-phase flow in a heterogeneous porous medium. The neural network-based model predicts the states of the grid cells at an arbitrary timestep (within the known constraints), taking in only the initial conditions: the properties of the heterogeneous permeability of the medium and the location of sources and sinks. The proposed model requires orders of magnitude less processor time in comparison with the classical numerical method, which served as a criterion for evaluating the effectiveness of the trained model. The proposed architecture includes a number of subnets trained in various combinations on several datasets. The techniques of adversarial training and weight transfer are utilized.

  8. При моделировании турбулентных течений в практических приложениях часто приходится проводить серии расчетов для тел близкой топологии. Например, тел, отличающихся формой обтекателя. Применение сверточных нейронных сетей позволяет сократить количество расчетов серии, восстановив часть из них по уже проведенным расчетам. В работе предлагается метод, позволяющий применить сверточную нейронную сеть независимо от способа построения вычислительной сетки. Для этого проводится переинтерполяция поля течения на равномерную сетку вместе с самим телом. Геометрия тела задается с помощью функции расстояния со знаком и маскирования. Восстановление поля течения на основании части расчетов для схожих геометрий проводится с помощью нейронной сети типа UNet с пространственным механизмом внимания. Разрешение пристенной области, являющееся критически важным условием при турбулентном моделировании, производится на основании уравнений, полученных в методе пристенной декомпозиции.

    Демонстрация метода приводится для случая обтекания скругленной пластины турбулентным потоком воздуха с различным скруглением при фиксированных параметрах набегающего потока с числом Рейнольдса $Re = 10^5$ и числом Маха $M = 0,15$. Поскольку течения с такими параметрами набегающего потока можно считать несжимаемыми, исследуются непосредственно только компоненты скорости. Проводится сравнение полей течения, профилей скорости и трения на стенке, полученных суррогатной моделью и численно. Анализ проводится как на пластине, так и на скруглении. Результаты моделирования подтверждают перспективность предлагаемого подхода. В частности, было показано, что даже в случае использования модели на максимально допустимых границах ее применимости трение может быть получено с точностью до 90%. Также в работе проводится анализ построенной архитектуры нейронной сети. Полученная суррогатная модель сравнивается с альтернативными моделями, построенными на основании вариационного автоэнкодера или метода главных компонент с использованием радиальных базисных функций. На основании этого сравнения демонстрируются преимущества предложенного метода.

    When modeling turbulent flows in practical applications, it is often necessary to carry out a series of calculations of bodies of similar topology. For example, bodies that differ in the shape of the fairing. The use of convolutional neural networks allows to reduce the number of calculations in a series, restoring some of them based on calculations already performed. The paper proposes a method that allows to apply a convolutional neural network regardless of the method of constructing a computational mesh. To do this, the flow field is reinterpolated to a uniform mesh along with the body itself. The geometry of the body is set using the signed distance function and masking. The restoration of the flow field based on part of the calculations for similar geometries is carried out using a neural network of the UNet type with a spatial attention mechanism. The resolution of the nearwall region, which is a critical condition for turbulent modeling, is based on the equations obtained in the nearwall domain decomposition method.

    A demonstration of the method is given for the case of a flow around a rounded plate by a turbulent air flow with different rounding at fixed parameters of the incoming flow with the Reynolds number $Re = 10^5$ and the Mach number $M = 0.15$. Since flows with such parameters of the incoming flow can be considered incompressible, only the velocity components are studied directly. The flow fields, velocity and friction profiles obtained by the surrogate model and numerically are compared. The analysis is carried out both on the plate and on the rounding. The simulation results confirm the prospects of the proposed approach. In particular, it was shown that even if the model is used at the maximum permissible limits of its applicability, friction can be obtained with an accuracy of up to 90%. The work also analyzes the constructed architecture of the neural network. The obtained surrogate model is compared with alternative models based on a variational autoencoder or the principal component analysis using radial basis functions. Based on this comparison, the advantages of the proposed method are demonstrated.

  9. Туманян А.Г., Барцев С.И.
    Простейшая поведенческая модель формирования импринта
    Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 793-802

    Формирование адекватных поведенческих паттернов в условиях неизвестного окружения осуществляется через поисковое поведение. При этом быстрейшее формирование приемлемого паттерна представляется более предпочтительным, чем долгая выработка совершенного паттерна, через многократное воспроизведение обучающей ситуации. В экстремальных ситуациях наблюдается явление импринтирования — мгновенного запечатления поведенческого паттерна, обеспечившего выживание особи. В данной работе предложены гипотеза и модель импринта, когда обученная по единственному успешному поведенческому паттерну нейронная сеть анимата демонстрирует эффективное функционирование. Реалистичность модели оценена путем проверки устойчивости воспроизведения поведенческого паттерна к возмущениям ситуации запуска импринта.

    Tumanyan A.G., Bartsev S.I.
    Simple behavioral model of imprint formation
    Computer Research and Modeling, 2014, v. 6, no. 5, pp. 793-802

    Formation of adequate behavioral patterns in condition of the unknown environment carried out through exploratory behavior. At the same time the rapid formation of an acceptable pattern is more preferable than a long elaboration perfect pattern through repeat play learning situation. In extreme situations, phenomenon of imprinting is observed — instant imprinting of behavior pattern, which ensure the survival of individuals. In this paper we propose a hypothesis and imprint model when trained on a single successful pattern of virtual robot's neural network demonstrates the effective functioning. Realism of the model is estimated by checking the stability of playback behavior pattern to perturbations situation imprint run.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  10. Киселев М.В.
    Исследование двухнейронных ячеек памяти в импульсных нейронных сетях
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 401-416

    В данной работе изучаются механизмы рабочей памяти в импульсных нейронных сетях, состоящих из нейронов – интеграторов с утечкой и адаптивным порогом при включенной синаптической пластичности. Исследовались относительно небольшие сети, включающие тысячи нейронов. Рабочая память трактовалась как способность нейронной сети удерживать в своем состоянии информацию о предъявленных ей в недавнем прошлом стимулах, так что по этой информации можно было бы определить, какой стимул был предъявлен. Под состоянием сети в данном исследовании понимаются только характеристики активности сети, не включая внутреннего состояния ее нейронов. Для выявления нейронных структур, которые могли бы выполнять функцию носителей рабочей памяти, была проведена оптимизация параметров и структуры импульсной нейронной сети с помощью генетического алгоритма. Были обнаружены два типа таких нейронных структур: пары нейронов, соединенных связями с большими весами, и длинные древовидные нейронные цепи. Было показано, что качественная рабочая память может быть реализована только с помощью сильно связанных нейронных пар. В работе исследованы свойства таких ячеек памяти и образуемых ими структур. Показано, что характеристики изучаемых двухнейронных ячеек памяти легко задаются параметрами входящих в них нейронов и межнейронных связей. Выявлен интересный эффект повышения селективности пары нейронов за счет несовпадения наборов их афферентных связей и взаимной активации. Продемонстрировано также, что ансамбли таких структур могут быть использованы для реализации обучения без учителя распознаванию паттернов во входном сигнале.

    Kiselev M.V.
    Exploration of 2-neuron memory units in spiking neural networks
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 401-416

    Working memory mechanisms in spiking neural networks consisting of leaky integrate-and-fire neurons with adaptive threshold and synaptic plasticity are studied in this work. Moderate size networks including thousands of neurons were explored. Working memory is a network ability to keep in its state the information about recent stimuli presented to the network such that this information is sufficient to determine which stimulus has been presented. In this study, network state is defined as the current characteristics of network activity only — without internal state of its neurons. In order to discover the neuronal structures serving as a possible substrate of the memory mechanism, optimization of the network parameters and structure using genetic algorithm was carried out. Two kinds of neuronal structures with the desired properties were found. These are neuron pairs mutually connected by strong synaptic links and long tree-like neuronal ensembles. It was shown that only the neuron pairs are suitable for efficient and reliable implementation of working memory. Properties of such memory units and structures formed by them are explored in the present study. It is shown that characteristics of the studied two-neuron memory units can be set easily by the respective choice of the parameters of its neurons and synaptic connections. Besides that, this work demonstrates that ensembles of these structures can provide the network with capability of unsupervised learning to recognize patterns in the input signal.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.