Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Введение в теорию сложных сетей
Компьютерные исследования и моделирование, 2010, т. 2, № 2, с. 121-141В последние годы сложилось новое направление изучения сложных систем, рассматривающее их как сетевые структуры. Узлы в таких сетях представляют собой элементы этих сложных систем, а связи между узлами – взаимодействия между элементами. Эти исследования имеют дело с реальными системами, такими как биологические (метаболические сети клеток, функциональные сети мозга, экологические системы), технические (Интернет, WWW, сети компаний сотовой связи, сети электростанций), социальные (сети научного сотрудничества, сети актеров кино, сети знакомств). Оказалось, что эти сети имеют более сложную архитектуру, чем классические случайные сети. В предлагаемом обзоре даются основные понятия теории сложных сетей, а также кратко описаны основные направления изучения реальных сетевых структур.
Introduction to the theory of complex networks
Computer Research and Modeling, 2010, v. 2, no. 2, pp. 121-141Просмотров за год: 53. Цитирований: 107 (РИНЦ).There was a new direction of studying of the complex systems last years, considering them as networks. Nodes in such networks represent elements of these complex systems, and links between nodes – interactions between elements. These researches deal with real systems, such as biological (metabolic networks of cells, functional networks of a brain, ecological systems), technical (the Internet, WWW, networks of the companies of cellular communication, power grids), social (networks of scientific cooperation, a network of movie actors, a network of acquaintances). It has appeared that these networks have more complex architecture, than classical random networks. In the offered review the basic concepts theory of complex networks are given, and the basic directions of studying of real networks structures are also briefly described.
-
Теория самоорганизации. На пороге IV парадигмы
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 315-336В работе представлены ключевые проблемы теории самоорганизации или синергетики, а также прогноз ее развития на ближайшие десятилетия. Показано, что будущее этого междисциплинарного подхода, вероятно, определит создание и становление сетевой парадигмы. Рассмотрены постановки нескольких фундаментальных научных и принципиальных технологических задач, а также конкретные результаты, приводящие к этим выводам.
Ключевые слова: синергетика, сетевая парадигма, самоорганизация, когнитивные центры, сетевая социология, малые миры, сетецентрические войны, когнитивные пределы, кризис вычислений, сложность, самоорганизованная критичность.
Theory of self-organization. On the cusp of IV paradigm
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 315-336Просмотров за год: 9. Цитирований: 19 (РИНЦ).We discuss key problems of self-organization theory, synergetics, and the prospects of its development for the next decades. We show that the future of this interdisciplinary approach probably is defined by the development of new network paradigm. We consider statements of several fundamental scientific and principle technological problems and concrete results giving rise to these conclusions.
- Просмотров за год: 18.
-
Научные и педагогические школы Александра Сергеевича Холодова
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 561-579В развитии науки важную роль играют научные школы — объединения исследователей, связанные общей проблемой, идеями и методами, используемыми для решения проблемы. Научные школы формируются вокруг лидера и объединяющей идеи.
За время научной деятельности академика А. С. Холодова вокруг него сформировалось несколько научных школ. В обзоре делается попытка представить основные научные направления, вокруг которых сформировались яркие коллективы с общими системами взглядов и подходами к исследованиям. В обзоре отмечается эта общая основа. Во-первых, это развитие группы численных методов для решения систем дифференциальных уравнений в частных производных гиперболического типа — сеточно-характеристические методы. Во-вторых, описание численных методов в пространствах неопределенных коэф- фициентов. Этот подход развивался как для всех типов уравнений в частных производных, так и для обыкновенных дифференциальных уравнений.
На основе предложенных А. С. Холодовым численных подходов сложились научные коллективы, работающие в разных предметных областях. Это математическое моделирование динамики плазмы, динамики деформируемого твердого тела, некоторых задач биологии, биофизики, медицинской физики и биомеханики. Сравнительно новые направления — решение задач на графах (процессы транспортировки электроэнергии, моделирование транспортных потоков на дорожной сети и т. д.).
В обзоре делается попытка отследить деятельность научных школ от момента их зарождения до настоящего времени, проследить связь работ А. С. Холодова с работами его учеников и коллег. Полный обзор деятельности всех научных школ, сформировавшихся вокруг Александра Сергеевча, невозможен ввиду огромного количества и разнообразия научных результатов.
Делается также попытка связать деятельность научных школ с появлением научно-образовательной школы в Московском физико-техническом институте.
Ключевые слова: научная школа, сеточно-характеристические методы, пространства неопределенных коэффициентов, динамика плазмы, динамика деформируемого твердого тела, биомеханика, процессы на графах.
Scientific and pedagogical schools founded by A. S. Kholodov
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 561-579Просмотров за год: 42.In the science development an important role the scientific schools are played. This schools are the associations of researchers connected by the common problem, the ideas and the methods used for problems solution. Usually Scientific schools are formed around the leader and the uniting idea.
The several sciences schools were created around academician A. S. Kholodov during his scientific and pedagogical activity.
This review tries to present the main scientific directions in which the bright science collectives with the common frames of reference and approaches to researches were created. In the review this common base is marked out. First, this is development of the group of numerical methods for hyperbolic type systems of partial derivatives differential equations solution — grid and characteristic methods. Secondly, the description of different numerical methods in the undetermined coefficients spaces. This approach developed for all types of partial equations and for ordinary differential equations.
On the basis of A. S. Kholodov’s numerical approaches the research teams working in different subject domains are formed. The fields of interests are including mathematical modeling of the plasma dynamics, deformable solid body dynamics, some problems of biology, biophysics, medical physics and biomechanics. The new field of interest includes solving problem on graphs (such as processes of the electric power transportation, modeling of the traffic flows on a road network etc).
There is the attempt in the present review analyzed the activity of scientific schools from the moment of their origin so far, to trace the connection of A. S. Kholodov’s works with his colleagues and followers works. The complete overview of all the scientific schools created around A. S. Kholodov is impossible due to the huge amount and a variety of the scientific results.
The attempt to connect scientific schools activity with the advent of scientific and educational school in Moscow Institute of Physics and Technology also becomes.
-
Нейросетевая модель определения функционального состояния опьянения человека в решении отдельных задач обеспечения транспортной безопасности
Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 285-293В данной статье решается задача определения функционального состояния опьянения водителей автотранспортных средств. Ее решение актуально в сфере транспортной безопасности при прохождении предрейсовых медицинских осмотров. Решение задачи основано на применении метода пупиллометрии, позволяющего судить о состоянии водителя по его зрачковой реакции на изменение освещенности. Производится постановка задачи определения состояния опьянения водителя по анализу значений параметров пупиллограммы — временного ряда, характеризующего изменение размеров зрачка при воздействии кратковременного светового импульса. Для анализа пупиллограмм предлагается использовать нейронную сеть. Разработана нейросетевая модель определения функционального состояния опьянения водителей. Для ее обучения использованы специально подготовленные выборки данных, представляющие собой сгруппированные по двум классам функциональных состояний водителей значения следующих параметров зрачковых реакций: диаметр начальный, диаметр минимальный, диаметр половинного сужения, диаметр конечный, амплитуда сужения, скорость сужения, скорость расширения, латентное время реакции, время сужения, время расширения, время половинного сужения и время половинного расширения. Приводится пример исходных данных. На основе их анализа построена нейросетевая модель в виде однослойного персептрона, состоящего из двенадцати входных нейронов, двадцати пяти нейронов скрытого слоя и одного выходного нейрона. Для повышения адекватности модели методом ROC-анализа определена оптимальная точка отсечения классов решений на выходе нейронной сети. Предложена схема определения состояния опьянения водителей, включающая следующие этапы: видеорегистрация зрачковой реакции, построение пупиллограммы, вычисление значений ее параметров, анализ данных на основе нейросетевой модели, классификация состояния водителя как «норма» или «отклонение от нормы», принятие решений по проверяемому лицу. Медицинскому работнику, проводящему осмотр водителя, представляется нейросетевая оценка его состояния опьянения. На основе данной оценки производится заключение о допуске или отстранении водителя от управления транспортным средством. Таким образом, нейросетевая модель решает задачу повышения эффективности проведения предрейсового медицинского осмотра за счет повышения достоверности принимаемых решений.
Ключевые слова: нейросетевая модель, пупиллометрия, зрачковая реакция, предрейсовый медицинский осмотр, функциональное состояние опьянения водителя, принятие решений.
Neural network model of human intoxication functional state determining in some problems of transport safety solution
Computer Research and Modeling, 2018, v. 10, no. 3, pp. 285-293Просмотров за год: 42. Цитирований: 2 (РИНЦ).This article solves the problem of vehicles drivers intoxication functional statedetermining. Its solution is relevant in the transport security field during pre-trip medical examination. The problem solution is based on the papillomometry method application, which allows to evaluate the driver state by his pupillary reaction to illumination change. The problem is to determine the state of driver inebriation by the analysis of the papillogram parameters values — a time series characterizing the change in pupil dimensions upon exposure to a short-time light pulse. For the papillograms analysis it is proposed to use a neural network. A neural network model for determining the drivers intoxication functional state is developed. For its training, specially prepared data samples are used which are the values of the following parameters of pupillary reactions grouped into two classes of functional states of drivers: initial diameter, minimum diameter, half-constriction diameter, final diameter, narrowing amplitude, rate of constriction, expansion rate, latent reaction time, the contraction time, the expansion time, the half-contraction time, and the half-expansion time. An example of the initial data is given. Based on their analysis, a neural network model is constructed in the form of a single-layer perceptron consisting of twelve input neurons, twenty-five neurons of the hidden layer, and one output neuron. To increase the model adequacy using the method of ROC analysis, the optimal cut-off point for the classes of solutions at the output of the neural network is determined. A scheme for determining the drivers intoxication state is proposed, which includes the following steps: pupillary reaction video registration, papillogram construction, parameters values calculation, data analysis on the base of the neural network model, driver’s condition classification as “norm” or “rejection of the norm”, making decisions on the person being audited. A medical worker conducting driver examination is presented with a neural network assessment of his intoxication state. On the basis of this assessment, an opinion on the admission or removal of the driver from driving the vehicle is drawn. Thus, the neural network model solves the problem of increasing the efficiency of pre-trip medical examination by increasing the reliability of the decisions made.
-
Современные методы математического моделирования кровотока c помощью осредненных моделей
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 581-604Изучение физиологических и патофизиологических процессов, связанных с системой кровообращения, является на сегодняшний день актуальной темой многих исследований. В данной работе рассматривается ряд подходов к математическому моделированию кровотока, основанных на пространственном осреднении и/или использующих стационарное приближение. Обсуждаются допущения и предположения, ограничивающие область применения моделей такого рода. Приводятся наиболее распространенные математические постановки задач и кратко описываются методы их численного решения. В первой части обсуждаются модели, основанные на полном пространственном осреднении и/или использующие стационарное приближение. Один из наиболее распространенных на сегодняшний день подходов состоит в проведении аналогий между течением вязкой несжимаемой жидкости в эластичных трубках и электрическим током в цепи. Такие модели используются не только сами по себе, но и как способ постановки граничных условий в моделях, учитывающих одномерную или трехмерную пространственную зависимость переменных. Динамические, полностью осредненные по пространству модели позволяют описывать динамику кровотока на достаточно больших временных интервалах, равных длительности десятков сердечных циклов и более. Далее рассмотрены стационарные модели основанные как на полностью осредненном, так и на двухмерном подходе. Такие модели могут быть использованы для моделирования кровотока в микроциркуляторном русле. Во второй части обсуждаются модели, основанные на одномерном осреднении параметров кровотока. Преимущество данного подхода также состоит в невысоких, по сравнению с трехмерным моделированием, требованиях к вычислительным ресурсам и возможности охвата всех достаточно крупных кровеносных сосудов в организме. Модели данного типа позволяют рассчитывать параметры кровотока в каждом сосуде сосудистой сети, включенной в модель. Структура и параметры такой сети могут быть заданы как на основе данных литературы, так и с помощью методов сегментации медицинских данных. Основными и весьма существенными предположениями при выводе одномерных уравнений из уравнений Навье – Стокса с помощью асимптотического анализа или их интегрирования по объему являются радиальная симметрия течения и постоянство формы профиля скорости в поперечном сечении. Существующие в настоящее время работы, посвященные валидации одномерных моделей, их сравнению между собой и с данными клинических исследований, позволяют говорить об успешности данного подхода и подтверждают возможность его использования в медицинской практике. Одномерные модели позволяют описывать такие динамические явления, как распространение пульсовой волны и звуки Короткова. В этом приближении могут быть учтены такие факторы, как действие на кровоток силы тяжести, действие на стенки сосудов силы сжатия мышц, регуляторные и ауторегуляторные эффекты.
Modern methods of mathematical modeling of blood flow using reduced order methods
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 581-604Просмотров за год: 62. Цитирований: 2 (РИНЦ).The study of the physiological and pathophysiological processes in the cardiovascular system is one of the important contemporary issues, which is addressed in many works. In this work, several approaches to the mathematical modelling of the blood flow are considered. They are based on the spatial order reduction and/or use a steady-state approach. Attention is paid to the discussion of the assumptions and suggestions, which are limiting the scope of such models. Some typical mathematical formulations are considered together with the brief review of their numerical implementation. In the first part, we discuss the models, which are based on the full spatial order reduction and/or use a steady-state approach. One of the most popular approaches exploits the analogy between the flow of the viscous fluid in the elastic tubes and the current in the electrical circuit. Such models can be used as an individual tool. They also used for the formulation of the boundary conditions in the models using one dimensional (1D) and three dimensional (3D) spatial coordinates. The use of the dynamical compartment models allows describing haemodynamics over an extended period (by order of tens of cardiac cycles and more). Then, the steady-state models are considered. They may use either total spatial reduction or two dimensional (2D) spatial coordinates. This approach is used for simulation the blood flow in the region of microcirculation. In the second part, we discuss the models, which are based on the spatial order reduction to the 1D coordinate. The models of this type require relatively small computational power relative to the 3D models. Within the scope of this approach, it is also possible to include all large vessels of the organism. The 1D models allow simulation of the haemodynamic parameters in every vessel, which is included in the model network. The structure and the parameters of such a network can be set according to the literature data. It also exists methods of medical data segmentation. The 1D models may be derived from the 3D Navier – Stokes equations either by asymptotic analysis or by integrating them over a volume. The major assumptions are symmetric flow and constant shape of the velocity profile over a cross-section. These assumptions are somewhat restrictive and arguable. Some of the current works paying attention to the 1D model’s validation, to the comparing different 1D models and the comparing 1D models with clinical data. The obtained results reveal acceptable accuracy. It allows concluding, that the 1D approach can be used in medical applications. 1D models allow describing several dynamical processes, such as pulse wave propagation, Korotkov’s tones. Some physiological conditions may be included in the 1D models: gravity force, muscles contraction force, regulation and autoregulation.
-
Обзор по тематике клеточных автоматов на базе современных отечественных публикаций
Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 9-57Проведен анализ отечественных публикаций за 2013–2017 гг. включительно, посвященных клеточным автоматам (КА). Большая их часть связана с математическим моделированием. Наукометрическими графиками за 1990–2017 гг. доказана актуальность тематики. Обзор позволяет выделить персоналии и научные направления/школы в современной российской науке, выявить их оригинальность или вторичность по сравнению с мировым уровнем. За счет выбора национальной, а не мировой, базы публикаций обзор претендует на полноту (из 526 просмотренных ссылок научным значением обладают около 200).
В приложении к обзору даются первичные сведения о КА — игра «Жизнь», теорема о садах Эдема, элементарные КА (вместе с диаграммой де Брюина), блочные КА Марголуса, КА с альтернацией. Причем акцентируется внимание на трех важных для моделирования семантиках КА — традициях фон Неймана, Цузе и Цетлина, а также показывается родство с концепциями нейронных сетей и сетей Петри. Выделены условные 10 работ по КА, с которыми должен быть знаком любой специалист по КА. Некоторые важные работы 1990-х гг. и более поздние перечислены во введении.
Затем весь массив публикаций разбит на рубрики: «Модификации КА и другие сетевые модели» (29 %), «Математические свойства КА и связь с математикой» (5 %), «Аппаратные реализации» (3 %), «Программные реализации» (5 %), «Обработка данных, распознавание и криптография» (8 %), «Механика, физика и химия» (20 %), «Биология, экология и медицина» (15 %), «Экономика, урбанистика и социология» (15 %). В скобках указана доля тематики в массиве. Отмечается рост публикаций по КА в гуманитарной сфере, а также появление гибридных подходов, уводящих в сторону от классических КА.
Ключевые слова: клеточные автоматы, наукометрия, параллельные вычисления, распределенные системы, математическое моделирование.
Cellular automata review based on modern domestic publications
Computer Research and Modeling, 2019, v. 11, no. 1, pp. 9-57Просмотров за год: 58.The paper contains the analysis of the domestic publications issued in 2013–2017 years and devoted to cellular automata. The most of them concern on mathematical modeling. Scientometric schedules for 1990–2017 years have proved relevance of subject. The review allows to allocate the main personalities and the scientific directions/schools in modern Russian science, to reveal their originality or secondness in comparison with world science. Due to the authors choice of national publications basis instead of world, the paper claims the completeness and the fact is that about 200 items from the checked 526 references have an importance for science.
In the Annex to the review provides preliminary information about CA — the Game of Life, a theorem about gardens of Eden, elementary CAs (together with the diagram of de Brujin), block Margolus’s CAs, alternating CAs. Attention is paid to three important for modeling semantic traditions of von Neumann, Zuse and Zetlin, as well as to the relationship with the concepts of neural networks and Petri nets. It is allocated conditional 10 works, which should be familiar to any specialist in CA. Some important works of the 1990s and later are listed in the Introduction.
Then the crowd of publications is divided into categories: the modification of the CA and other network models (29 %), Mathematical properties of the CA and the connection with mathematics (5 %), Hardware implementation (3 %), Software implementation (5 %), Data Processing, recognition and Cryptography (8 %), Mechanics, physics and chemistry (20 %), Biology, ecology and medicine (15 %), Economics, urban studies and sociology (15 %). In parentheses the share of subjects in the array are indicated. There is an increase in publications on CA in the humanitarian sphere, as well as the emergence of hybrid approaches, leading away from the classic CA definition.
-
Разработка сетевых вычислительных моделей для исследования нелинейных волновых процессов на графах
Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 777-814В различных приложениях возникают задачи, моделируемые уравнениями в частных производных на графах (сетях, деревьях). Для исследования данных проблем и возникающих различных экстремальных ситуаций, для задач проектирования и оптимизации сетей различных типов в данной работе построена вычислительная модель, основанная на решении соответствующих краевых задач для нелинейных уравнений в частных производных гиперболического типа на графах (сетях, деревьях). В качестве приложений были выбраны три различные задачи, решаемые в рамках общего подхода сетевых вычислительных моделей. Первая — это моделирование движения транспортных потоков. При решении данной задачи использовался макроскопический подход, при котором транспортный поток описывается нелинейной системой гиперболических уравнений второго порядка. Проведенные расчеты и полученные результаты показали, что разработанная в рамках предложенного подхода модель хорошо воспроизводит реальную ситуацию на различных участках транспортной сети г. Москвы на значительных временных интервалах, а также может быть использована для выбора наиболее оптимальной стратегии организации дорожного движения в городе. Вторая — моделирование потоков данных в компьютерных сетях. В этой задаче потоки данных различных соединений в пакетной сети передачи данных моделировались в виде несмешивающихся потоков сплошной среды. Предложены концептуальная и математическая модели сети. Проведено численное моделирование в сравнении с системой имитационного моделирования сети NS-2. Полученные результаты показали, что в сравнении с пакетной моделью NS-2 разработанная нами потоковая модель демонстрирует значительную экономию вычислительных ресурсов, обеспечивая при этом хорошую степень подобия, и позволяет моделировать поведение сложных глобально распределенных IP-сетей передачи данных. Третья — моделирование распространения газовых примесей в вентиляционных сетях. Была разработана вычислительная математическая модель распространения мелкодисперсных или газовых примесей в вентиляционных сетях с использованием уравнений газовой динамики путем численного сопряжения областей разной размерности. Проведенные расчеты показали, что модель с хорошей точностью позволяет определять распределение газодинамических параметров в трубопроводной сети и решать задачи динамического управления вентиляцией.
Ключевые слова: уравнения в частных производных, графы, вычислительные модели, уравнения гиперболического типа, численное моделирование, граничные условия.
Development of network computational models for the study of nonlinear wave processes on graphs
Computer Research and Modeling, 2019, v. 11, no. 5, pp. 777-814In various applications arise problems modeled by nonlinear partial differential equations on graphs (networks, trees). In order to study such problems and various extreme situations arose in the problems of designing and optimizing networks developed the computational model based on solving the corresponding boundary problems for partial differential equations of hyperbolic type on graphs (networks, trees). As applications, three different problems were chosen solved in the framework of the general approach of network computational models. The first was modeling of traffic flow. In solving this problem, a macroscopic approach was used in which the transport flow is described by a nonlinear system of second-order hyperbolic equations. The results of numerical simulations showed that the model developed as part of the proposed approach well reproduces the real situation various sections of the Moscow transport network on significant time intervals and can also be used to select the most optimal traffic management strategy in the city. The second was modeling of data flows in computer networks. In this problem data flows of various connections in packet data network were simulated as some continuous medium flows. Conceptual and mathematical network models are proposed. The numerical simulation was carried out in comparison with the NS-2 network simulation system. The results showed that in comparison with the NS-2 packet model the developed streaming model demonstrates significant savings in computing resources while ensuring a good level of similarity and allows us to simulate the behavior of complex globally distributed IP networks. The third was simulation of the distribution of gas impurities in ventilation networks. It was developed the computational mathematical model for the propagation of finely dispersed or gas impurities in ventilation networks using the gas dynamics equations by numerical linking of regions of different sizes. The calculations shown that the model with good accuracy allows to determine the distribution of gas-dynamic parameters in the pipeline network and solve the problems of dynamic ventilation management.
-
Методы решения парадокса Браесса на транспортной сети с автономным транспортом
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 281-294Дороги — ресурс, который может использоваться как водителями, так и автономными транспортными средствами. Ежегодно количество транспортных средств увеличивается, из-за чего каждое отдельно взятое транспортное средство тратит всё больше времени в пробках, тем самым увеличивая суммарные временные затраты. При планировании новой дороги ключевой задачей становится сокращение времени в пути. Оптимизация транспортных сетей в настоящее время часто происходит с помощью добавления новых связующих дорог между высоконагруженными частями трасс. Парадокс Браесса заключается в том, что построение нового ребра дорожной сети приводит к увеличению времени в пути для каждого транспортного средства в сети. Целью данной статьи является предложение различных разрешений парадокса Браесса при рассмотрении автономных транспортных средств в качестве участников дорожного движения. Один из вариантов топологического решения транспортной задачи — использование искусственных ограничителей трафика. Как пример таких ограничителей статья рассматривает введение выделенных полос, доступных только для определенных видов транспорта. Выделенные полосы занимают особое место в транспортной сети и могут обслуживать поток по-разному. В данной статье рассмотрены наиболее часто встречающиеся случаи распределения трафика на сети из двух дорог, приведены аналитический и численный методы оптимизации модели и представлена модель оптимального распределения трафика, которая рассматривает различные варианты выделения полос на изолированной транспортной сети. В результате проведенных исследований было обнаружено, что введение выделенных полос решает парадокс Браесса и приводит к уменьшению общего времени в пути. Решения приведены как для искусственно смоделированной сети, так и на реальных примерах. В статье представлен алгоритм моделирования трафика на браессовской сети и приведено обоснование его корректности на реальном примере.
Methods for resolving the Braess paradox in the presence of autonomous vehicles
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 281-294Roads are a shared resource which can be used either by drivers and autonomous vehicles. Since the total number of vehicles increases annually, each considered vehicle spends more time in traffic jams, and thus the total travel time prolongs. The main purpose while planning the road system is to reduce the time spent on traveling. The optimization of transportation networks is a current goal, thus the formation of traffic flows by creating certain ligaments of the roads is of high importance. The Braess paradox states the existence of a network where the construction of a new edge leads to the increase of traveling time. The objective of this paper is to propose various solutions to the Braess paradox in the presence of autonomous vehicles. One of the methods of solving transportation topology problems is to introduce artificial restrictions on traffic. As an example of such restrictions, this article considers designated lanes which are available only for a certain type of vehicles. Designated lanes have their own location in the network and operating conditions. This article observes the most common two-roads traffic situations, analyzes them using analytical and numerical methods and presents the model of optimal traffic flow distribution, which considers different ways of lanes designation on isolated transportation networks. It was found that the modeling of designated lanes eliminates Braess’ paradox and optimizes the total traveling time. The solutions were shown on artificial networks and on the real-life example. A modeling algorithm for Braess network was proposed and its correctness was verified using the real-life example.
-
Традиционная классификация сложных сетей на биологические, технологические и социальные является неполной, поскольку существует огромное разнообразие продуктов художественного творчества, структуру которых также можно представить в виде сетей. В статье дан обзор исследований сложных сетей, моделирующих некоторые литературные, музыкальные и живописные произведения. Соответствующие сети предложено называть когнитивными. Обсуждаются основные направления изучения таких сетевых структур.
Просмотров за год: 6. Цитирований: 16 (РИНЦ).Traditional classification of real complex networks on biological, technological and social is incomplete, as there is a huge variety of artworks, which structure also can be presented in the form of networks. In this paper the review of researches of the complex networks, modeling some literary, musical and painting works is given. Corresponding networks are offered for naming cognitive networks. The possible directions of studying of such networks are discussed.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"