Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'model':
Найдено статей: 781
  1. Орлов М.А., Камзолова С.Г., Рясик А.А., Зыкова Е.А., Сорокин А.А.
    Профили вызванной суперспирализацией дестабилизации дуплекса ДНК (SIDD) для промоторов бактериофага T7
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 867-878

    Для функционирования регуляторных областей ДНК решающее значение имеет не нуклеотидная последовательность (генетический текст), а их физико-химические и структурные свойства. Именно они обеспечивают кодирование ДНК-белковых взаимодействий, лежащих в основе различных процессов регуляции. Среди таких свойств SIDD (Stress-Induced Duplex Destabilization) — характеристика, описывающая склонность участка дуплекса ДНК к плавлению при заданном уровне суперспирализации. Ранее для данного параметра дуплекса показана роль в функционировании областей регуляции различного типа. В данной работе модель SIDD использована для получения профилей вероятности плавления последовательностей промоторов бактериофага T7. Данный геном характеризуется малым размером (примерно 40 тыс. пар нуклеотидов) и временной организацией экспрессии генов: на первом этапе инфекции ранняя область Т7-ДНК транскрибируется РНК-полимеразой бактерии-хозяина, на более поздних этапах жизненного цикла фагоспецифичная РНК-полимераза последовательно производит транскрипцию областей генов II класса и III класса. При этом механизмы дифференциального узнавания промоторов разных групп ферментом-полимеразой не могут быть основаны исключительно на их нуклеотидной последовательности, в частности в связи с тем, что она очень близка для большинства таких промоторов. В то же время полученные профили SIDD данных промоторов сильно различаются и могут быть разделены на характерные группы, соответствующие функциональным классам промоторов Т7-ДНК. Так, все промоторы ранней области находятся в области влияния одного максимально дестабилизированного участка дуплекса ДНК, соответствующего различным областям конкретных промоторов. Промоторы класса II лишены значительно дестабилизированных областей вблизи точки старта транскрипции. Напротив, промоторы III класса имеют характерные пики профилей вероятности плавления, в каждом случае локализованные в ближней downstream-области. Таким образом, установлены значительные различия профилей для промоторных областей при очень близкой нуклеотидной последовательности (промоторы II и III классов отличаются единичными заменами нуклеотидов), что подтверждает высокую чувствительность рассматриваемого свойства дуплекса к первичной структуре, а также необходимость рассмотрения широкого генетического контекста. Описанные различия профилей вероятности плавления на основе модели SIDD наряду с другими физическими свойствами могут определять дифференциальное узнавание промоторов разных классов РНК-полимеразами.

    Orlov M.A., Kamzolova S.G., Ryasik A.A., Zykova E.A., Sorokin A.A.
    Stress-induced duplex destabilization (SIDD) profiles for T7 bacteriophage promoters
    Computer Research and Modeling, 2018, v. 10, no. 6, pp. 867-878

    The functioning of DNA regulatory regions rely primarily on their physicochemical and structural properties but not on nucleotide sequences, i.e. ‘genetic text’. The formers are responsible for coding of DNA-protein interactions that govern various regulatory events. One of the characteristics is SIDD (Stress-Induced Duplex Destabilization) that quantify DNA duplex region propensity to melt under the imposed superhelical stress. The duplex property has been shown to participate in activity of various regulatory regions. Here we employ the SIDD model to calculate melting probability profiles for T7 bacteriophage promoter sequences. The genome is characterized by small size (approximately 40 thousand nucleotides) and temporal organization of expression: at the first stage of infection early T7 DNA region is transcribed by the host cell RNA polymerase, later on in life cycle phage-specific RNA polymerase performs transcription of class II and class III genes regions. Differential recognition of a particular group of promoters by the enzyme cannot be solely explained by their nucleotide sequences, because of, among other reasons, it is fairly similar among most the promoters. At the same time SIDD profiles obtained vary significantly and are clearly separated into groups corresponding to functional promoter classes of T7 DNA. For example, early promoters are affected by the same maximally destabilized DNA duplex region located at the varying region of a particular promoter. class II promoters lack substantially destabilized regions close to transcription start sites. Class III promoters, in contrast, demonstrate characteristic melting probability maxima located in the near-downstream region in all cases. Therefore, the apparent differences among the promoter groups with exceptional textual similarity (class II and class III differ by only few singular substitutions) were established. This confirms the major impact of DNA primary structure on the duplex parameter as well as a need for a broad genetic context consideration. The differences in melting probability profiles obtained using SIDD model alongside with other DNA physicochemical properties appears to be involved in differential promoter recognition by RNA polymerases.

    Просмотров за год: 18.
  2. Мальсагов М.Х., Угольницкий Г.А., Усов А.Б.
    Борьба с экономической коррупцией при распределении ресурсов
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 173-185

    В теоретико-игровой постановке рассмотрена модель борьбы с коррупцией при распределении ресурсов. Система распределения ресурсов включает в свой состав одного принципала (субъект управления верхнего уровня), одного или нескольких супервайзеров (субъектов среднего уровня) и нескольких агентов (субъекты нижнего уровня). Отношения между субъектами разных уровней строятся на основе иерархии: субъект верхнего уровня воздействует (управляет) на субъектов среднего уровня, а те, в свою очередь, на субъектов нижнего уровня. Предполагается, что коррупции подвержен средний уровень управления. Агенты предлагают супервайзеру взятки, в обмен на которые он предоставляет им дополнительные доли ресурса. Предположим также, что принципал не подвержен коррупции и является бескорыстным, не преследующим частных целей. Исследование модели проведено с точки зрения как супервайзера, так и агентов. C точки зрения агентов, возникает некооперативная игра, в которой находится равновесие Нэша. При этом задачи оптимального управления для частного вида входных функций решаются аналитически с помощью принципа максимума Понтрягина. C точки зрения супервайзера, возникает игра, которая ведется в соответствии с регламентом игры Гермейера Г2t. Указан алгоритм построения равновесия. Стратегия наказания находится аналитически. Стратегия поощрения в случае входных функций общего вида находится численно. Строится дискретный аналог непрерывной модели. Предполагается, что все субъекты управления могут изменять свои стратегии поведения в одни и те же моменты времени конечное число раз. В результате от задачи максимизации своего целевого функционала супервайзер переходит к задаче максимизации целевой функции многих переменных. Для нахождения ее наибольшего значения используется метод качественно репрезентативных сценариев. Идея этого метода состоит в том, что из множества потенциально возможных сценариев управления выбираются только сценарии, позволяющие представить качественно различные пути развития системы. В результате мощность этого множества не слишком велика и удается осуществить полный перебор качественно репрезентативных сценариев и найти стратегию поощрения агентов. После ее нахождения супервайзер предлагает агентам механизм управления с обратной связью по управлению, состоящий в наказании агентов при отклонении от выбранной супервайзером стратегии и поощрении в противном случае.

    Malsagov M.X., Ougolnitsky G.A., Usov A.B.
    Struggle against economic corruption in resource allocation
    Computer Research and Modeling, 2019, v. 11, no. 1, pp. 173-185

    A dynamic game theoretic model of struggle against corruption in resource allocation is considered. It is supposed that the system of resource allocation includes one principal, one or several supervisors, and several agents. The relations between them are hierarchical: the principal influences to the supervisors, and they in turn exert influence on the agents. It is assumed that the supervisor can be corrupted. The agents propose bribes to the supervisor who in exchange allocates additional resources to them. It is also supposed that the principal is not corrupted and does not have her own purposes. The model is investigated from the point of view of the supervisor and the agents. From the point of view of agents a non-cooperative game arises with a set of Nash equilibria as a solution. The set is found analytically on the base of Pontryagin maximum principle for the specific class of model functions. From the point of view of the supervisor a hierarchical Germeyer game of the type Г2t is built, and the respective algorithm of its solution is proposed. The punishment strategy is found analytically, and the reward strategy is built numerically on the base of a discrete analogue of the initial continuous- time model. It is supposed that all agents can change their strategies in the same time instants only a finite number of times. Thus, the supervisor can maximize his objective function of many variables instead of maximization of the objective functional. A method of qualitatively representative scenarios is used for the solution. The idea of this method consists in that it is possible to choose a very small number of scenarios among all potential ones that represent all qualitatively different trajectories of the system dynamics. These scenarios differ in principle while all other scenarios yield no essentially new results. Then a complete enumeration of the qualitatively representative scenarios becomes possible. After that, the supervisor reports to the agents the rewardpunishment control mechanism.

    Просмотров за год: 33. Цитирований: 1 (РИНЦ).
  3. Кетова К.В., Романовский Ю.М., Русяк И.Г.
    Математическое моделирование динамики человеческого капитала
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342

    В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.

    В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.

    Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.

    Ketova K.V., Romanovsky Y.M., Rusyak I.G.
    Mathematical modeling of the human capital dynamic
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342

    In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.

    This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.

    The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.

    Просмотров за год: 34.
  4. Никонов Э.Г., Павлуш М., Поповичова М.
    Молекулярно-динамическое моделирование процессов взаимодействия водяного пара с несквозными порами цилиндрического типа
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 493-501

    Теоретические и экспериментальные исследования взаимодействия водяного пара с пористыми материалами проводятся как на макро-, так и на микроуровне. На макроуровне исследуется влияние структуры расположения индивидуальных пор на процессы взаимодействия водяного пара с пористым материалом как сплошной средой. На микроуровне исследуется зависимость характеристик взаимодействия водяного пара с пористой средой от геометрии и размеров индивидуальной поры.

    В данной работе проведено исследование посредством математического моделирования процессов взаимодействия водяного пара с индивидуальной несквозной порой цилиндрического типа. Вычисления производились с использованием модели гибридного типа, сочетающей в себе молекулярно-динамический и макродиффузионный подходы для описания взаимодействия водяного пара c индивидуальной порой. Исследовались процессы эволюции к состоянию термодинамического равновесия макроскопических характеристик системы, таких как температура, плотность, давление, в зависимости от внешних по отношению к поре условий. Проведено исследование зависимости параметров эволюции от распределения значений коэффициента диффузии в поре, полученного в результате молекулярно-динамического моделирования. Актуальность данных исследований обусловлена тем, что все используемые для моделирования влаго- и теплопроводности методы и программы основаны на применении уравнений переноса в пористом материале (как сплошной среде) с известными заранее значениями коэффициентов переноса, которые, как правило, получены экспериментально.

    Nikonov E.G., Pavlus M., Popovičová M.
    Molecular-dynamic simulation of water vapor interaction with suffering pores of the cylindrical type
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 493-501

    Theoretical and experimental investigations of water vapor interaction with porous materials are carried out both at the macro level and at the micro level. At the macro level, the influence of the arrangement structure of individual pores on the processes of water vapor interaction with porous material as a continuous medium is studied. At the micro level, it is very interesting to investigate the dependence of the characteristics of the water vapor interaction with porous media on the geometry and dimensions of the individual pore.

    In this paper, a study was carried out by means of mathematical modelling of the processes of water vapor interaction with suffering pore of the cylindrical type. The calculations were performed using a model of a hybrid type combining a molecular-dynamic and a macro-diffusion approach for describing water vapor interaction with an individual pore. The processes of evolution to the state of thermodynamic equilibrium of macroscopic characteristics of the system such as temperature, density, and pressure, depending on external conditions with respect to pore, were explored. The dependence of the evolution parameters on the distribution of the diffusion coefficient in the pore, obtained as a result of molecular dynamics modelling, is examined. The relevance of these studies is due to the fact that all methods and programs used for the modelling of the moisture and heat conductivity are based on the use of transport equations in a porous material as a continuous medium with known values of the transport coefficients, which are usually obtained experimentally.

    Просмотров за год: 9.
  5. В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.

    В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.

    В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.

    Ilyin O.V.
    The modeling of nonlinear pulse waves in elastic vessels using the Lattice Boltzmann method
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 707-722

    In the present paper the application of the kinetic methods to the blood flow problems in elastic vessels is studied. The Lattice Boltzmann (LB) kinetic equation is applied. This model describes the discretized in space and time dynamics of particles traveling in a one-dimensional Cartesian lattice. At the limit of the small times between collisions LB models describe hydrodynamic equations which are equivalent to the Navier – Stokes for compressible if the considered flow is slow (small Mach number). If one formally changes in the resulting hydrodynamic equations the variables corresponding to density and sound wave velocity by luminal area and pulse wave velocity then a well-known 1D equations for the blood flow motion in elastic vessels are obtained for a particular case of constant pulse wave speed.

    In reality the pulse wave velocity is a function of luminal area. Here an interesting analogy is observed: the equation of state (which defines sound wave velocity) becomes pressure-area relation. Thus, a generalization of the equation of state is needed. This procedure popular in the modeling of non-ideal gas and is performed using an introduction of a virtual force. This allows to model arbitrary pressure-area dependence in the resulting hemodynamic equations.

    Two test case problems are considered. In the first problem a propagation of a sole nonlinear pulse wave is studied in the case of the Laplace pressure-area response. In the second problem the pulse wave dynamics is considered for a vessel bifurcation. The results show good precision in comparison with the data from literature.

    Просмотров за год: 2.
  6. Малков С.Ю.
    Режимы с обострением в истории человечества или воспоминания о будущем
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947

    В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.

    Malkov S.Yu.
    Regimes with exacerbation in the history of mankind or memories of the future
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947

    The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.

  7. Попов В.С., Попова А.А.
    Моделирование взаимодействия стенки канала с упругозакрепленным торцевым уплотнением
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 387-400

    В работе предложена новая математическая модель для исследования динамики взаимодействия продольной стенки узкого канала с его торцевым уплотнением — торцевой стенкой, имеющей упругое закрепление. В рамках данной модели взаимодействие указанных стенок происходит через слой вязкой жидкости, заполняющей канал, и ранее не исследовалось. Это потребовало постановки и решения задачи гидроупругости. Поставленная задача состоит из уравнений Навье–Стокса, уравнения неразрывности, уравнения динамики торцевой стенки как одномассовой модели и соответствующих краевых условий. На первом этапе задача исследована при ползучем течении. На втором этапе исследования данное ограничение снимается и, при использовании метода итераций, осуществлено обобщение исходной задачи с учетом инерции движения жидкости. Решение сформулированной задачи позволило определить законы распределения скоростей и давления в слое жидкости, а также закон движения торцевой стенки. Показано, что при ползучем течении физические свойства слоя жидкости и геометрические размеры канала полностью определяют демпфирование в рассматриваемой колебательной системе. При этом на демпфирующие свойства слоя жидкости оказывает влияние как скорость движения торцевой стенки, так и скорость движения продольной стенки. Найдены выражения для коэффициентов демпфирования слоя жидкости в продольном и поперечном направлении. При учете сил инерции жидкости выявлено их влияние на колебания торцевой стенки, проявляющиеся в виде двух присоединенных масс в уравнении ее движения. Определены выражения для указанных присоединенных масс. Для режима установившихся гармонических колебаний построены амплитудно-частотные и фазово-частотные характеристики торцевой стенки, учитывающие демпфирующие и инерционные свойства слоя вязкой жидкости в канале. Моделирование показало, что совместный учет инерции движения слоя жидкости в канале и его демпфирующих свойств приводит к сдвигу резонансных частот колебаний в низкочастотную область и возрастанию амплитуд колебаний торцевой стенки.

    Popov V.S., Popova A.A.
    Modeling of a channel wall interaction with an end seal flexibly restrained at the edge
    Computer Research and Modeling, 2020, v. 12, no. 2, pp. 387-400

    The paper proposes a new mathematical model to study the interaction dynamics of the longitudinal wall of a narrow channel with its end seal. The end seal was considered as the edge wall on a spring, i.e. spring-mass system. These walls interaction occurs via a viscous liquid filling the narrow channel; thus required the formulation and solution of the hydroelasticity problem. However, this problem has not been previously studied. The problem consists of the Navier–Stokes equations, the continuity equation, the edge wall dynamics equation, and the corresponding boundary conditions. Two cases of fluid motion in a narrow channel with parallel walls were studied. In the first case, we assumed the liquid motion as the creeping one, and in the second case as the laminar, taking into account the motion inertia. The hydroelasticty problem solution made it possible to determine the distribution laws of velocities and pressure in the liquid layer, as well as the motion law of the edge wall. It is shown that during creeping flow, the liquid physical properties and the channel geometric dimensions completely determine the damping in the considered oscillatory system. Both the end wall velocity and the longitudinal wall velocity affect the damping properties of the liquid layer. If the fluid motion inertia forces were taken into account, their influence on the edge wall vibrations was revealed, which manifested itself in the form of two added masses in the equation of its motion. The added masses and damping coefficients of the liquid layer due to the joint consideration of the liquid layer inertia and its viscosity were determined. The frequency and phase responses of the edge wall were constructed for the regime of steady-state harmonic oscillations. The simulation showed that taking into account the fluid layer inertia and its damping properties leads to a shift in the resonant frequencies to the low-frequency region and an increase in the oscillation amplitudes of the edge wall.

  8. Суворов Н.В., Шлеймович М.П.
    Математическая модель биометрической системы распознавания по радужной оболочке глаза
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 629-639

    Автоматическое распознавание личности по биометрическому признаку основано на уникальных особенностях или характеристиках людей. Процесс биометрической идентификации представляет собой формирование эталонных шаблонов и сравнение их с новыми входными данными. Алгоритмы распознавания по рисунку радужной оболочки глаза показали на практике высокую точность и малый процент ошибок идентификации. Преимущества радужки над другими биометрическими признаками определяется ее большей степенью свободы (около 249 степеней свободы), избыточной плотностью уникальных признаков и постоянностью во времени. Высокий уровень достоверности распознавания очень важен, потому что позволяет выполнять поиск по большим базам данных и работать в режиме идентификации один-ко-многим, в отличии от режима проверки один-к-одному, который применим дляне большого количества сравнений. Любая биометрическая система идентификации является вероятностной. Для описания качественных характеристик распознавания применяются: точность распознавания, вероятность ложного доступа и вероятность ложного отказа доступа. Эти характеристики позволяют сравнивать методы распознавания личности между собой и оценивать поведение системы в каких-либо условиях. В этой статье объясняется математическая модель биометрической идентификации по радужной оболочке глаза, ее характеристики и анализируются результаты сравнения модели с реальным процессом распознавания. Для решения этой задачи проводится обзор существующих методов идентификации по радужной оболочке глаза, основанных на различных способах формирования вектора уникальных признаков. Описывается разработанный программный комплекс на языке Python, который строит вероятностные распределения и генерирует большие наборы тестовых данных, которые могут быть использованы в том числе для обучения нейронной сети принятия решения об идентификации. В качестве практического применения модели предложен алгоритм синергии нескольких методов идентификации личности по радужной оболочке глаза, позволяющий увеличить качественные характеристики системы, в сравнении с применением каждого метода отдельно.

    Suvorov N.V., Shleymovich M.P.
    Mathematical model of the biometric iris recognition system
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 629-639

    Automatic recognition of personal identity by biometric features is based on unique peculiarities or characteristics of people. Biometric identification process consist in making of reference templates and comparison with new input data. Iris pattern recognition algorithms presents high accuracy and low identification errors percent on practice. Iris pattern advantages over other biometric features are determined by its high degree of freedom (nearly 249), excessive density of unique features and constancy. High recognition reliability level is very important because it provides search in big databases. Unlike one-to-one check mode that is applicable only to small calculation count it allows to work in one-to-many identification mode. Every biometric identification system appears to be probabilistic and qualitative characteristics description utilizes such parameters as: recognition accuracy, false acceptance rate and false rejection rate. These characteristics allows to compare identity recognition methods and asses the system performance under any circumstances. This article explains the mathematical model of iris pattern biometric identification and its characteristics. Besides, there are analyzed results of comparison of model and real recognition process. To make such analysis there was carried out the review of existing iris pattern recognition methods based on different unique features vector. The Python-based software package is described below. It builds-up probabilistic distributions and generates large test data sets. Such data sets can be also used to educate the identification decision making neural network. Furthermore, synergy algorithm of several iris pattern identification methods was suggested to increase qualitative characteristics of system in comparison with the use of each method separately.

  9. Савин С.И., Ворочаева Л.Ю., Куренков В.В.
    Математическое моделирование тенсегрити-роботов с жесткими стержнями
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 821-830

    В работе рассматривается вопрос математического моделирования робототехнических структур на основе напряженно-связных конструкций, известных в англоязычных источниках как tensegrity structures (тенсегрити-структуры). Определяющим свойством таких конструкций является то, что образующие их элементы работают только на сжатие или растяжение, что позволяет использовать материалы и конструктивные решения для выполнения этих элементов, минимизирующие вес структуры, сохраняя ее прочность.

    Тенсегрити-структуры отличаются рядом свойств, важных для коллаборативной робототехники, задач разведывания и движения в недетерминированных средах: естественной податливостью, компактностью при транспортировке, малым весом при значительной удароустойчивости и жесткости. При этом открытыми остаются многие вопросы управления такими структурами, что в свою очередь связано со сложностью описания их динамики.

    В работе предложен подход к описанию и составлению динамических уравнений для таких конструкций, основанный на описании динамики второго порядка декартовых координат элементов структуры (стержней), динамики первого порядка для угловых скоростей стержней и динамики первого порядка для кватернионов, используемых для описания ориентации стержней. Предложен подход к численному решению составленных динамических уравнений. Предложенные методы реализованы в виде свободно распространяемого математического пакета с открытым исходным кодом.

    В работе продемонстрировано, как разработанный программный комплекс может использоваться для моделирования динамики и определения режимов работы тенсегрити-структур. Рассмотрен пример тенсегрити-структуры с тремя жесткими стержнями и девятью упругими элементами, работающими на растяжение (тросами), движущейся в невесомости. Показаны особенности динамики структуры в процессе достижения положения равновесия, определены области начальных значений параметров ориентации стержней, при которых структура работает в штатном режиме, и значения, при которых растяжение тросов превышает выбранное критическое значение или происходит провисание тросов. Полученные результаты могут непосредственно использоваться при анализе характера пассивных динамических движений роботов, основанных на трехзвенной тенсегрити-структуре, рассмотренный в работе; предложенные методы моделирования и разработанное программное обеспечение пригодны для моделирования значительного многообразия тенсегрити-роботов.

    Savin S.I., Vorochaeva L.I., Kurenkov V.V.
    Mathematical modelling of tensegrity robots with rigid rods
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 821-830

    In this paper, we address the mathematical modeling of robots based on tensegrity structures. The pivotal property of such structures is the forming elements working only for compression or tension, which allows the use of materials and structural solutions that minimize the weight of the structure while maintaining its strength.

    Tensegrity structures hold several properties important for collaborative robotics, exploration and motion tasks in non-deterministic environments: natural compliance, compactness for transportation, low weight with significant impact resistance and rigidity. The control of such structures remains an open research problem, which is associated with the complexity of describing the dynamics of such structures.

    We formulate an approach for describing the dynamics of such structures, based on second-order dynamics of the Cartesian coordinates of structure elements (rods), first-order dynamics for angular velocities of rods, and first-order dynamics for quaternions that are used to describe the orientation of rods. We propose a numerical method for solving these dynamic equations. The proposed methods are implemented in the form of a freely distributed mathematical package with open source code.

    Further, we show how the provided software package can be used for modeling the dynamics and determining the operating modes of tensegrity structures. We present an example of a tensegrity structure moving in zero gravity with three rigid rods and nine elastic elements working in tension (cables), showing the features of the dynamics of the structure in reaching the equilibrium position. The range of initial conditions for which the structure operates in the normal mode is determined. The results can be directly used to analyze the nature of passive dynamic movements of the robots based on a three-link tensegrity structure, considered in the paper; the proposed modeling methods and the developed software are suitable for modeling a significant variety of tensegrity robots.

  10. Васильев Е.В., Пержу А.В., Король А.О., Капитан Д.Ю., Рыбин А.Е., Солдатов К.С., Капитан В.Ю.
    Численное моделирование двумерных магнитных скирмионных структур
    Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1051-1061

    В данной работе с помощью алгоритма Метрополиса авторами были изучены магнитные системы, в которых из-за конкуренции между прямым гейзенберговским обменом и взаимодействием Дзялошинского–Мория возникают магнитные вихревые структуры — скирмионы.

    В статье рассматриваются условия зарождения и стабильного существования магнитных скирмионов в двумерных магнитных пленках в рамках классической модели Гейзенберга. Изучена термическая стабильность скирмионов в магнитной пленке. Были рассмотрены процессы формирования различных состояний в изучаемой системе при варьировании величины внешнего магнитного поля, выделены различные фазы, в которые переходит система спинов Гейзенберга. Было выделено семь фаз: парамагнитная, спиральная, лабиринтная, спираль-скирмионная, скирмионная, скирмион-ферромагнитная и ферромагнитная фазы, подробный анализ конфигураций которых приводится в статье.

    Построены две фазовые диаграммы: на первой показано поведение системы при постоянном $D$ в зависимости от величин внешнего магнитного поля и температуры: $(T, B)$, на второй — изменение кон- фигураций системы при постоянной температуре $T$ в зависимости от величины взаимодействия Дзялошинского–Мории и внешнего магнитного поля: $(D, B)$.

    Полученные в ходе численных экспериментов данные будут использованы в дальнейших исследованиях при определении модельных параметров системы для формирования стабильного скирмионного состояния и разработки методов контроля скирмионов в магнитной пленке.

    Vasiliev E.V., Perzhu A.V., Korol A.O., Kapitan D.Y., Rubin A.E., Soldatov K.S., Kapitan V.U.
    Numerical simulation of two-dimensional magnetic skyrmion structures
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 1051-1061

    Magnetic systems, in which due to competition between the direct Heisenberg exchange and the Dzyaloshinskii –Moriya interaction, magnetic vortex structures — skyrmions appear, were studied using the Metropolis algorithm.

    The conditions for the nucleation and stable existence of magnetic skyrmions in two-dimensional magnetic films in the frame of the classical Heisenberg model were considered in the article. A thermal stability of skyrmions in a magnetic film was studied. The processes of the formation of various states in the system at different values of external magnetic fields were considered, various phases into which the Heisenberg spin system passes were recognized. The authors identified seven phases: paramagnetic, spiral, labyrinth, spiralskyrmion, skyrmion, skyrmion-ferromagnetic and ferromagnetic phases, a detailed analysis of the configurations is given in the article.

    Two phase diagrams were plotted: the first diagram shows the behavior of the system at a constant $D$ depending on the values of the external magnetic field and temperature $(T, B)$, the second one shows the change of the system configurations at a constant temperature $T$ depending on the magnitude of the Dzyaloshinskii – Moriya interaction and external magnetic field: $(D, B)$.

    The data from these numerical experiments will be used in further studies to determine the model parameters of the system for the formation of a stable skyrmion state and to develop methods for controlling skyrmions in a magnetic film.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.