Распространение языков в КНР на уровне провинций: оценивание при неполных данных

 pdf (130K)

Данная работа посвящена решению практической задачи восстановления данных по распространению языков на региональном уровне на примере Китайской Народной Республики. Необходимость получения таких данных связана с задачей вычисления индексов лингвистического разнообразия, которые, в свою очередь, активно используются при эмпирическом анализе и прогнозе факторов социально-экономического развития, а также могут служить индикаторами потенциальных конфликтов на рассматриваемых территориях. В качестве исходной информации мы используем сведения из базы данных «Этнолог» (Ethnologue), дополняя их общедоступными данными переписей населения. Рассматриваемые нами данные содержат по каждому языку (а) оценку количества жителей страны, считающих этот язык родным, и (б) индикаторы наличия таких жителей в каждой из провинций КНР. Наша задача — для всех пар «язык–провинция» оценить количество жителей провинции, считающих этот язык родным. Она сводится к решению недоопределенной системы алгебраических уравнений. Специфика данных Ethnologue заключается в том, что, в силу большой трудоемкости и стоимости сбора таких данных, а также неполноты сведений по соответствующему разделу в переписях населения, имеющаяся информация по отдельным языкам в различных провинциях представлена за различные периоды времени. Одновременное использование таких данных приводит к тому, что возникающая система уравнений имеет неточно определенную правую часть, поэтому мы строим приближенное решение, характеризуемое минимальной невязкой. Учитывая неоднородность исходных данных (некоторые из языков оказываются на порядки менее распространенными), мы переходим к использованию взвешенной невязки, определяя в каждом уравнении весовые коэффициенты как величины, обратно пропорциональные правой части. Такой способ формирования невязки позволяет восстановить искомые переменные. Более 92% переменных оказываются устойчивыми к изменениям правой части при вероятностном моделировании ошибок записей в исходных данных.

Ключевые слова: использование языков в регионах, индексы неоднородности, восстановление неполных данных
Цитата: Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 707-716

Languages in China provinces: quantitative estimation with incomplete data

This paper formulates and solves a practical problem of data recovery regarding the distribution of languages on regional level in context of China. The necessity of this recovery is related to the problem of the determination of the linguistic diversity indices, which, in turn, are used to analyze empirically and to predict sources of social and economic development as well as to indicate potential conflicts at regional level. We use Ethnologue database and China census as the initial data sources. For every language spoken in China, the data contains (a) an estimate of China residents who claim this language to be their mother tongue, and (b) indicators of the presence of such residents in China provinces. For each pair language/province, we aim to estimate the number of the province inhabitants that claim the language to be their mother tongue. This base problem is reduced to solving an undetermined system of algebraic equations. Given additional restriction that Ethnologue database introduces data collected at different time moments because of gaps in Ethnologue language surveys and accompanying data collection expenses, we relate those data to a single time moment, that turns the initial task to an ’ill-posed’ system of algebraic equations with imprecisely determined right hand side. Therefore, we are looking for an approximate solution characterized by a minimal discrepancy of the system. Since some languages are much less distributed than the others, we minimize the weighted discrepancy, introducing weights that are inverse to the right hand side elements of the equations. This definition of discrepancy allows to recover the required variables. More than 92% of the recovered variables are robust to probabilistic modelling procedure for potential errors in initial data.

Keywords: regional languages usage, dissimilarity indices, incomplete data identification

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00, 03.01.00, 03.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science