Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Linear and nonlinear optimization models of multiple covering of a bounded plane domain with circles
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1101-1110Problems of multiple covering ($k$-covering) of a bounded set $G$ with equal circles of a given radius are well known. They are thoroughly studied under the assumption that $G$ is a finite set. There are several papers concerned with studying this problem in the case where $G$ is a connected set. In this paper, we study the problem of minimizing the number of circles that form a $k$-covering, $k \geqslant 1$, provided that $G$ is a bounded convex plane domain.
For the above-mentioned problem, we state a 0-1 linear model, a general integer linear model, and a nonlinear model, imposing a constraint on the minimum distance between the centers of covering circles. The latter constraint is due to the fact that in practice one can place at most one device at each point. We establish necessary and sufficient solvability conditions for the linear models and describe one (easily realizable) variant of these conditions in the case where the covered set $G$ is a rectangle.
We propose some methods for finding an approximate number of circles of a given radius that provide the desired $k$-covering of the set $G$, both with and without constraints on distances between the circles’ centers. We treat the calculated values as approximate upper bounds for the number of circles. We also propose a technique that allows one to get approximate lower bounds for the number of circles that is necessary for providing a $k$-covering of the set $G$. In the general linear model, as distinct from the 0-1 linear model, we require no additional constraint. The difference between the upper and lower bounds for the number of circles characterizes the quality (acceptability) of the constructed $k$-covering.
We state a nonlinear mathematical model for the $k$-covering problem with the above-mentioned constraints imposed on distances between the centers of covering circles. For this model, we propose an algorithm which (in certain cases) allows one to find more exact solutions to covering problems than those calculated from linear models.
For implementing the proposed approach, we have developed computer programs and performed numerical experiments. Results of numerical experiments demonstrate the effectiveness of the method.
Ключевые слова: linear models of the multiple covering problem, $k$-covering of a bounded set, nonlinear models of the $k$-covering problem with circles of a given radius, solvability conditions for linear models of the $k$-covering problem.
Linear and nonlinear optimization models of multiple covering of a bounded plane domain with circles
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1101-1110Problems of multiple covering ($k$-covering) of a bounded set $G$ with equal circles of a given radius are well known. They are thoroughly studied under the assumption that $G$ is a finite set. There are several papers concerned with studying this problem in the case where $G$ is a connected set. In this paper, we study the problem of minimizing the number of circles that form a $k$-covering, $k \geqslant 1$, provided that $G$ is a bounded convex plane domain.
For the above-mentioned problem, we state a 0-1 linear model, a general integer linear model, and a nonlinear model, imposing a constraint on the minimum distance between the centers of covering circles. The latter constraint is due to the fact that in practice one can place at most one device at each point. We establish necessary and sufficient solvability conditions for the linear models and describe one (easily realizable) variant of these conditions in the case where the covered set $G$ is a rectangle.
We propose some methods for finding an approximate number of circles of a given radius that provide the desired $k$-covering of the set $G$, both with and without constraints on distances between the circles’ centers. We treat the calculated values as approximate upper bounds for the number of circles. We also propose a technique that allows one to get approximate lower bounds for the number of circles that is necessary for providing a $k$-covering of the set $G$. In the general linear model, as distinct from the 0-1 linear model, we require no additional constraint. The difference between the upper and lower bounds for the number of circles characterizes the quality (acceptability) of the constructed $k$-covering.
We state a nonlinear mathematical model for the $k$-covering problem with the above-mentioned constraints imposed on distances between the centers of covering circles. For this model, we propose an algorithm which (in certain cases) allows one to find more exact solutions to covering problems than those calculated from linear models.
For implementing the proposed approach, we have developed computer programs and performed numerical experiments. Results of numerical experiments demonstrate the effectiveness of the method.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
Ключевые слова: сверточная нейронная сеть, анализ данных, распознавание дорожных знаков, интеллектуальные транспортные системы.
A neural network model for traffic signs recognition in intelligent transport systems
Computer Research and Modeling, 2021, v. 13, no. 2, pp. 429-435This work analyzes the problem of traffic signs recognition in intelligent transport systems. The basic concepts of computer vision and image recognition tasks are considered. The most effective approach for solving the problem of analyzing and recognizing images now is the neural network method. Among all kinds of neural networks, the convolutional neural network has proven itself best. Activation functions such as Relu and SoftMax are used to solve the classification problem when recognizing traffic signs. This article proposes a technology for recognizing traffic signs. The choice of an approach for solving the problem based on a convolutional neural network due to the ability to effectively solve the problem of identifying essential features and classification. The initial data for the neural network model were prepared and a training sample was formed. The Google Colaboratory cloud service with the external libraries for deep learning TensorFlow and Keras was used as a platform for the intelligent system development. The convolutional part of the network is designed to highlight characteristic features in the image. The first layer includes 512 neurons with the Relu activation function. Then there is the Dropout layer, which is used to reduce the effect of overfitting the network. The output fully connected layer includes four neurons, which corresponds to the problem of recognizing four types of traffic signs. An intelligent traffic sign recognition system has been developed and tested. The used convolutional neural network included four stages of convolution and subsampling. Evaluation of the efficiency of the traffic sign recognition system using the three-block cross-validation method showed that the error of the neural network model is minimal, therefore, in most cases, new images will be recognized correctly. In addition, the model has no errors of the first kind, and the error of the second kind has a low value and only when the input image is very noisy.
-
Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.
Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.
Ключевые слова: вариационное неравенство, седловая задача, гладкость высокого порядка, тензорные методы, минимизация нормы градиента.
Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.
For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.
Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.
Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.
-
Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1111-1119The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.
Ключевые слова: $\varepsilon$-Lipschitz functions, function minimization, Strongin’s algorithm, algorithm convergence.
Extension of Strongin’s Global Optimization Algorithm to a Function Continuous on a Compact Interval
Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1111-1119The Lipschitz continuous property has been used for a long time to solve the global optimization problem and continues to be used. Here we can mention the work of Piyavskii, Yevtushenko, Strongin, Shubert, Sergeyev, Kvasov and others. Most papers assume a priori knowledge of the Lipschitz constant, but the derivation of this constant is a separate problem. Further still, we must prove that an objective function is really Lipschitz, and it is a complicated problem too. In the case where the Lipschitz continuity is established, Strongin proposed an algorithm for global optimization of a satisfying Lipschitz condition on a compact interval function without any a priori knowledge of the Lipschitz estimate. The algorithm not only finds a global extremum, but it determines the Lipschitz estimate too. It is known that every function that satisfies the Lipchitz condition on a compact convex set is uniformly continuous, but the reverse is not always true. However, there exist models (Arutyunova, Dulliev, Zabotin) whose study requires a minimization of the continuous but definitely not Lipschitz function. One of the algorithms for solving such a problem was proposed by R. J. Vanderbei. In his work he introduced some generalization of the Lipchitz property named $\varepsilon$-Lipchitz and proved that a function defined on a compact convex set is uniformly continuous if and only if it satisfies the $\varepsilon$-Lipchitz condition. The above-mentioned property allowed him to extend Piyavskii’s method. However, Vanderbei assumed that for a given value of $\varepsilon$ it is possible to obtain an associate Lipschitz $\varepsilon$-constant, which is a very difficult problem. Thus, there is a need to construct, for a function continuous on a compact convex domain, a global optimization algorithm which works in some way like Strongin’s algorithm, i.e., without any a priori knowledge of the Lipschitz $\varepsilon$-constant. In this paper we propose an extension of Strongin’s global optimization algorithm to a function continuous on a compact interval using the $\varepsilon$-Lipchitz conception, prove its convergence and solve some numerical examples using the software that implements the developed method.
-
Тензорные методы внутри смешанного оракула для решения задач типа min-min
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 377-398В данной статье рассматривается задача типа min-min: минимизация по двум группам переменных. Данная задача в чем-то похожа на седловую (min-max), однако лишена некоторых сложностей, присущих седловым задачам. Такого рода постановки могут возникать, если в задаче выпуклой оптимизации присутствуют переменные разных размерностей или если какие-то группы переменных определены на разных множествах. Подобная структурная особенность проблемы дает возможность разбивать ее на подзадачи, что позволяет решать всю задачу с помощью различных смешанных оракулов. Ранее в качестве возможных методов для решения внутренней или внешней задачи использовались только методы первого порядка или методы типа эллипсоидов. В нашей работе мы рассматриваем данный подход с точки зрения возможности применения алгоритмов высокого порядка (тензорных методов) для решения внутренней подзадачи. Для решения внешней подзадачи мы используем быстрый градиентный метод.
Мы предполагаем, что внешняя подзадача определена на выпуклом компакте, в то время как для внутренней задачи мы отдельно рассматриваем задачу без ограничений и определенную на выпуклом компакте. В связи с тем, что тензорные методы по определению используют производные высокого порядка, время на выполнение одной итерации сильно зависит от размерности решаемой проблемы. Поэтому мы накладываем еще одно условие на внутреннюю подзадачу: ее размерность не должна превышать 1000. Для возможности использования смешанного оракула намнео бходимы некоторые дополнительные предположения. Во-первых, нужно, чтобы целевой функционал был выпуклымпо совокупности переменных и чтобы его градиент удовлетворял условию Липшица также по совокупности переменных. Во-вторых, нам необходимо, чтобы целевой функционал был сильно выпуклый по внутренней переменной и его градиент по внутренней переменной удовлетворял условию Липшица. Также для применения тензорного метода нам необходимо выполнение условия Липшица p-го порядка ($p > 1$). Наконец, мы предполагаем сильную выпуклость целевого функционала по внешней переменной, чтобы иметь возможность использовать быстрый градиентный метод для сильно выпуклых функций.
Стоит отметить, что в качестве метода для решения внутренней подзадачи при отсутствии ограничений мы используем супербыстрый тензорный метод. При решении внутренней подзадачи на компакте используется ускоренный проксимальный тензорный метод для задачи с композитом.
В конце статьи мы также сравниваем теоретические оценки сложности полученных алгоритмов с быстрым градиентным методом, который не учитывает структуру задачи и решает ее как обычную задачу выпуклой оптимизации (замечания 1 и 2).
Ключевые слова: тензорные методы, гладкость высокого порядка, сильная выпуклость, смешанный оракул, неточный оракул.
Tensor methods inside mixed oracle for min-min problems
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 377-398In this article we consider min-min type of problems or minimization by two groups of variables. In some way it is similar to classic min-max saddle point problem. Although, saddle point problems are usually more difficult in some way. Min-min problems may occur in case if some groups of variables in convex optimization have different dimensions or if these groups have different domains. Such problem structure gives us an ability to split the main task to subproblems, and allows to tackle it with mixed oracles. However existing articles on this topic cover only zeroth and first order oracles, in our work we consider high-order tensor methods to solve inner problem and fast gradient method to solve outer problem.
We assume, that outer problem is constrained to some convex compact set, and for the inner problem we consider both unconstrained case and being constrained to some convex compact set. By definition, tensor methods use high-order derivatives, so the time per single iteration of the method depends a lot on the dimensionality of the problem it solves. Therefore, we suggest, that the dimension of the inner problem variable is not greater than 1000. Additionally, we need some specific assumptions to be able to use mixed oracles. Firstly, we assume, that the objective is convex in both groups of variables and its gradient by both variables is Lipschitz continuous. Secondly, we assume the inner problem is strongly convex and its gradient is Lipschitz continuous. Also, since we are going to use tensor methods for inner problem, we need it to be p-th order Lipschitz continuous ($p > 1$). Finally, we assume strong convexity of the outer problem to be able to use fast gradient method for strongly convex functions.
We need to emphasize, that we use superfast tensor method to tackle inner subproblem in unconstrained case. And when we solve inner problem on compact set, we use accelerated high-order composite proximal method.
Additionally, in the end of the article we compare the theoretical complexity of obtained methods with regular gradient method, which solves the mentioned problem as regular convex optimization problem and doesn’t take into account its structure (Remarks 1 and 2).
-
Субградиентные методы для слабо выпуклых и относительно слабо выпуклых задач с острым минимумом
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 393-412Работа посвящена исследованию субградиентных методов с различными вариациями шага Б.Т. Поляка на классах задач минимизации слабо выпуклых и относительно слабо выпуклых функций, обладающих соответствующим аналогом острого минимума. Оказывается, что при некоторых предположениях о начальной точке такой подход может давать возможность обосновать сходимость сyбградиентного метода со скоростью геометрической прогрессии. Для субградиентного метода с шагом Б.Т. Поляка доказана уточненная оценка скорости сходимости для задач минимизации слабо выпуклых функций с острым минимумом. Особенность этой оценки — дополнительный учет сокращения расстояния от текущей точки метода до множества решений по мере роста количества итераций. Представлены результаты численных экспериментов для задачи восстановления фазы (которая слабо выпyкла и имеет острый минимyм), демонстрирующие эффективность предложенного подхода к оценке скорости сходимости по сравнению с известным ранее результатом. Далее, предложена вариация субградиентного метода с переключениями по продуктивным и непродуктивным шагам для слабо выпуклых задач с ограничениями-неравенствами и получен некоторый аналог результата о сходимости со скоростью геометрической прогрессии. Для субградиентного метода с соответствующей вариацией шага Б.Т. Поляка на классе относительно липшицевых и относительно слабо выпуклых функций с относительным аналогом острого минимума получены условия, которые гарантируют сходимость такого субградиентного метода со скоростью геометрической прогрессии. Наконец, получен теоретический результат, описывающий влияние погрешности доступной сyбградиентномy методу информации о (сyб)градиенте и целевой функции на оценку качества выдаваемого приближенного решения. Доказано, что при достаточно малой погрешности $\delta > 0$ можно гарантировать достижение точности решения, сопоставимой c $\delta$.
Ключевые слова: субградиентный метод, острый минимум, липшицева функция, относительная липшицевость, относительный острый минимум, задача восстановления фазы.
Subgradient methods for weakly convex and relatively weakly convex problems with a sharp minimum
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 393-412The work is devoted to the study of subgradient methods with different variations of the Polyak stepsize for minimization functions from the class of weakly convex and relatively weakly convex functions that have the corresponding analogue of a sharp minimum. It turns out that, under certain assumptions about the starting point, such an approach can make it possible to justify the convergence of the subgradient method with the speed of a geometric progression. For the subgradient method with the Polyak stepsize, a refined estimate for the rate of convergence is proved for minimization problems for weakly convex functions with a sharp minimum. The feature of this estimate is an additional consideration of the decrease of the distance from the current point of the method to the set of solutions with the increase in the number of iterations. The results of numerical experiments for the phase reconstruction problem (which is weakly convex and has a sharp minimum) are presented, demonstrating the effectiveness of the proposed approach to estimating the rate of convergence compared to the known one. Next, we propose a variation of the subgradient method with switching over productive and non-productive steps for weakly convex problems with inequality constraints and obtain the corresponding analog of the result on convergence with the rate of geometric progression. For the subgradient method with the corresponding variation of the Polyak stepsize on the class of relatively Lipschitz and relatively weakly convex functions with a relative analogue of a sharp minimum, it was obtained conditions that guarantee the convergence of such a subgradient method at the rate of a geometric progression. Finally, a theoretical result is obtained that describes the influence of the error of the information about the (sub)gradient available by the subgradient method and the objective function on the estimation of the quality of the obtained approximate solution. It is proved that for a sufficiently small error $\delta > 0$, one can guarantee that the accuracy of the solution is comparable to $\delta$.
-
Укрупненная модель эколого-экономической системы на примере Республики Армения
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 621-631В настоящей статье представлена укрупненная динамическая модель эколого-экономической системы Республики Армения (РА). Такая модель построена с использованием методов системной динамики, позволяющих учесть важнейшие обратные связи, относящиеся к ключевым характеристикам эколого-экономической системы. Данная модель является двухкритериальной задачей, где в качестве целевого функционала рассматриваются уровень загрязнения воздуха и валовой прибыли национальной экономики. Уровень загрязнения воздуха минимизируется за счет модернизации стационарных и мобильных источников загрязнения при одновременной максимизации валовой прибыли национальной экономики. При этом рассматриваемая эколого-экономическая система характеризуется наличием внутренних ограничений, которые должны быть учтены при принятии стратегических решений. В результате предложен системный подход, позволяющий формировать рациональные решения по развитию производственной сферы РА при минимизации воздействия на окружающую среду. С помощью предлагаемого подхода, в частности, можно формировать план по оптимальной модернизации предприятий и прогнозировать долгосрочную динамику выбросов вредных веществ в атмосферу.
Ключевые слова: экологическое моделирование, системная динамика, многопараметрическая оптимизация, имитационное моделирование.
The integrated model of eco-economic system on the example of the Republic of Armenia
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 621-631Просмотров за год: 14. Цитирований: 7 (РИНЦ).This article presents an integrated dynamic model of eco-economic system of the Republic of Armenia (RA). This model is constructed using system dynamics methods, which allow to consider the major feedback related to key characteristics of eco-economic system. Such model is a two-objective optimization problem where as target functions the level of air pollution and gross profit of national economy are considered. The air pollution is minimized due to modernization of stationary and mobile sources of pollution at simultaneous maximization of gross profit of national economy. At the same time considered eco-economic system is characterized by the presence of internal constraints that must be accounted at acceptance of strategic decisions. As a result, we proposed a systematic approach that allows forming sustainable solutions for the development of the production sector of RA while minimizing the impact on the environment. With the proposed approach, in particular, we can form a plan for optimal enterprise modernization and predict long-term dynamics of harmful emissions into the atmosphere.
-
Применение генетических алгоритмов для управления организационными системами при возникновении нештатных ситуаций
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 533-556Оптимальное управление системой топливоснабжения заключается в выборе варианта развития энергетики, при котором достигается наиболее эффективное и надежное топливо- и энергоснабжение потребителей. В рамках реализации программы перевода распределенной системы теплоснабжения Удмуртской Республики на возобновляемые источники энергии была разработана информационно-аналитическая система управления топливоснабжением региона альтернативными видами топлива. В работе представлена математическая модель оптимального управления логистической системой топливоснабжения, состоящая из трех взаимосвязанных уровней: пункты накопления сырья, пункты производства топлива и пункты потребления. С целью повышения эффективности функционирования системы топливоснабжения региона информационно-аналитическая система расширена функционалом оперативного реагирования при возникновении нештатных ситуаций. Возникновение нештатных ситуаций на любом из уровней требует перестроения управления всей системой. Разработаны модели и алгоритмы оптимального управления в случае возникновения нештатных ситуаций, связанных с выходом из строя производственных звеньев логистической системы: пунктов накопления сырья и пунктов производства топлива. В математических моделях оптимального управления в качестве целевого критерия учитываются расходы, связанные с функционированием логистической системы при возникновении нештатной ситуации. Реализация разработанных алгоритмов основана на применении генетических алгоритмов оптимизации, что позволяет достичь наилучших результатов по времени работы алгоритма и точности полученного решения. Разработанные модели и алгоритмы интегрированы в информационно-аналитическую систему и позволяют оперативно реагировать на возникновение чрезвычайных ситуаций в системе топливоснабжения Удмуртской Республики путем применения альтернативных видов топлива.
Ключевые слова: генетический алгоритм, оптимальное управление, топливоснабжение, математическое моделирование, альтернативная энергетика, нештатная ситуация.
The application of genetic algorithms for organizational systems’ management in case of emergency
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 533-556Просмотров за год: 31.Optimal management of fuel supply system boils down to choosing an energy development strategy which provides consumers with the most efficient and reliable fuel and energy supply. As a part of the program on switching the heat supply distributed management system of the Udmurt Republic to renewable energy sources, an “Information-analytical system of regional alternative fuel supply management” was developed. The paper presents the mathematical model of optimal management of fuel supply logistic system consisting of three interconnected levels: raw material accumulation points, fuel preparation points and fuel consumption points, which are heat sources. In order to increase effective the performance of regional fuel supply system a modification of information-analytical system and extension of its set of functions using the methods of quick responding when emergency occurs are required. Emergencies which occur on any one of these levels demand the management of the whole system to reconfigure. The paper demonstrates models and algorithms of optimal management in case of emergency involving break down of such production links of logistic system as raw material accumulation points and fuel preparation points. In mathematical models, the target criterion is minimization of costs associated with the functioning of logistic system in case of emergency. The implementation of the developed algorithms is based on the usage of genetic optimization algorithms, which made it possible to obtain a more accurate solution in less time. The developed models and algorithms are integrated into the information-analytical system that enables to provide effective management of alternative fuel supply of the Udmurt Republic in case of emergency.
-
Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.
Ключевые слова: гетерогенные агенты, ожидания, идиосинкратические шоки, агрегированная неопределенность, теневая экономика, неформальный сектор экономики, легальный сектор экономики, сектор домашних хозяйств, байесовский метод, общее экономическое равновесие.
Combining the agent approach and the general equilibrium approach to analyze the influence of the shadow sector on the Russian economy
Computer Research and Modeling, 2020, v. 12, no. 3, pp. 669-684This article discusses the influence of the shadow, informal and household sectors on the dynamics of a stochastic model with heterogeneous (heterogeneous) agents. The study uses the integration of the general equilibrium approach to explain the behavior of demand, supply and prices in an economy with several interacting markets, and a multi-agent approach. The analyzed model describes an economy with aggregated uncertainty and with an infinite number of heterogeneous agents (households). The source of heterogeneity is the idiosyncratic income shocks of agents in the legal and shadow sectors of the economy. In the analysis, an algorithm is used to approximate the dynamics of the distribution function of the capital stocks of individual agents — the dynamics of its first and second moments. The synthesis of the agent approach and the general equilibrium approach is carried out using computer implementation of the recursive feedback between microagents and macroenvironment. The behavior of the impulse response functions of the main variables of the model confirms the positive influence of the shadow economy (below a certain limit) on minimizing the rate of decline in economic indicators during recessions, especially for developing economies. The scientific novelty of the study is the combination of a multi-agent approach and a general equilibrium approach for modeling macroeconomic processes at the regional and national levels. Further research prospects may be associated with the use of more detailed general equilibrium models, which allow, in particular, to describe the behavior of heterogeneous groups of agents in the entrepreneurial sector of the economy.
-
Аналоги условия относительной сильной выпуклости для относительно гладких задач и адаптивные методы градиентного типа
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 413-432Данная статья посвящена повышению скоростных гарантий численных методов градиентного типа для относительно гладких и относительно липшицевых задач минимизации в случае дополнительных предположений о некоторых аналогах сильной выпуклости целевой функции. Рассматриваются два класса задач: выпуклые задачи с условием относительного функционального роста, а также задачи (вообще говоря, невыпуклые) с аналогом условия градиентного доминирования Поляка – Лоясиевича относительно дивергенции Брэгмана. Для первого типа задач мы предлагаем две схемы рестартов методов градиентного типа и обосновываем теоретические оценки сходимости двух алгоритмов с адаптивно подбираемыми параметрами, соответствующими относительной гладкости или липшицевости целевой функции. Первый из этих алгоритмов проще в части критерия выхода из итерации, но для него близкие к оптимальным вычислительные гарантии обоснованы только на классе относительно липшицевых задач. Процедура рестартов другого алгоритма, в свою очередь, позволила получить более универсальные теоретические результаты. Доказана близкая к оптимальной оценка сложности на классе выпуклых относительно липшицевых задач с условием функционального роста, а для класса относительно гладких задач с условием функционального роста получены гарантии линейной скорости сходимости. На классе задач с предложенным аналогом условия градиентного доминирования относительно дивергенции Брэгмана были получены оценки качества выдаваемого решения с использованием адаптивно подбираемых параметров. Также мы приводим результаты некоторых вычислительных экспериментов, иллюстрирующих работу методов для второго исследуемого в настоящей статье подхода. В качестве примеров мы рассмотрели линейную обратную задачу Пуассона (минимизация дивергенции Кульбака – Лейблера), ее регуляризованный вариант, позволяющий гарантировать относительную сильную выпуклость целевой функции, а также некоторый пример относительно гладкой и относительно сильно выпуклой задачи. В частности, с помощью расчетов показано, что относительно сильно выпуклая функция может не удовлетворять введенному относительному варианту условия градиентного доминирования.
Ключевые слова: относительная сильная выпуклость, относительная гладкость, относительный функциональный рост, относительное условие градиентного доминирования, адаптивный метод, рестарты.
Analogues of the relative strong convexity condition for relatively smooth problems and adaptive gradient-type methods
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 413-432This paper is devoted to some variants of improving the convergence rate guarantees of the gradient-type algorithms for relatively smooth and relatively Lipschitz-continuous problems in the case of additional information about some analogues of the strong convexity of the objective function. We consider two classes of problems, namely, convex problems with a relative functional growth condition, and problems (generally, non-convex) with an analogue of the Polyak – Lojasiewicz gradient dominance condition with respect to Bregman divergence. For the first type of problems, we propose two restart schemes for the gradient type methods and justify theoretical estimates of the convergence of two algorithms with adaptively chosen parameters corresponding to the relative smoothness or Lipschitz property of the objective function. The first of these algorithms is simpler in terms of the stopping criterion from the iteration, but for this algorithm, the near-optimal computational guarantees are justified only on the class of relatively Lipschitz-continuous problems. The restart procedure of another algorithm, in its turn, allowed us to obtain more universal theoretical results. We proved a near-optimal estimate of the complexity on the class of convex relatively Lipschitz continuous problems with a functional growth condition. We also obtained linear convergence rate guarantees on the class of relatively smooth problems with a functional growth condition. For a class of problems with an analogue of the gradient dominance condition with respect to the Bregman divergence, estimates of the quality of the output solution were obtained using adaptively selected parameters. We also present the results of some computational experiments illustrating the performance of the methods for the second approach at the conclusion of the paper. As examples, we considered a linear inverse Poisson problem (minimizing the Kullback – Leibler divergence), its regularized version which allows guaranteeing a relative strong convexity of the objective function, as well as an example of a relatively smooth and relatively strongly convex problem. In particular, calculations show that a relatively strongly convex function may not satisfy the relative variant of the gradient dominance condition.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"