Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'mechanical stability':
Найдено статей: 23
  1. Федоров В.А., Холина Е.Г., Коваленко И.Б.
    Молекулярная динамика протофиламентов тубулина и влияние таксола на их изгибную деформацию
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 503-512

    Несмотря на широкое распространение и применение препаратов химиотерапии рака, остаются невыясненными молекулярные механизмы действия многих из них. Известно, что некоторые из этих препаратов, например таксол, оказывают влияние на динамику сборки микротрубочек и останавливают процесс клеточного деления в профазе-прометафазе. В последнее время появились новые пространственные структуры микротрубочек и отдельных олигомеров тубулина, связанных с различными регуляторными белками и препаратами химиотерапии рака. Однако знание пространственной структуры само по себе не дает информации о механизме действия препаратов.

    В работе был применен метод молекулярной динамики для исследования поведения связанных с таксолом олигомеров тубулина и использована разработанная нами ранее методика анализа конформационных изменений протофиламентов тубулина, основанная на вычислении модифицированных углов Эйлера. На новых структурах фрагментов микротрубочек было продемонстрировано, что протофиламенты тубулина изгибаются не в радиальном направлении, как предполагают многие исследователи, а под углом примерно 45 к радиальному направлению. Однако в присутствии таксола направление изгиба смещается ближе к радиальному направлению. Было выявлено отсутствие значимой разницы между средними значениями углов изгиба и скручивания на новых структурах тубулина при связывании с различными естественными регуляторными лигандами, гуанозинтрифосфатом и гуанозиндифосфатом. Было обнаружено, что угол изгиба внутри димера больше, чем угол междимерного изгиба во всех проанализированных траекториях. Это указывает на то, что основная доля энергии деформации запасается внутри димерных субъединиц тубулина, а не на междимерном интерфейсе. Анализ недавно опубликованных структур тубулина указал на то, что присутствие таксола в кармане бета-субъединицы тубулина аллостерически уменьшает жесткость олигомера тубулина на скручивание, что могло бы объяснить основной механизм воздействия таксола на динамику микротрубочек. Действительно, снижение крутильной жесткости дает возможность сохранить латеральные связи между протофиламентами, а значит, должно приводить к стабилизации микротрубочек, что и наблюдается в экспериментах. Результаты работы позволяют пролить свет на феномен динамической нестабильности микротрубочек и приблизиться к пониманию молекулярных механизмов клеточного деления.

    Fedorov V.A., Kholina E.G., Kovalenko I.B.
    Molecular dynamics of tubulin protofilaments and the effect of taxol on their bending deformation
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 503-512

    Despite the widespread use of cancer chemotherapy drugs, the molecular mechanisms of action of many of them remain unclear. Some of these drugs, such as taxol, are known to affect the dynamics of microtubule assembly and stop the process of cell division in prophase-prometaphase. Recently, new spatial structures of microtubules and individual tubulin oligomers have emerged associated with various regulatory proteins and cancer chemotherapy drugs. However, knowledge of the spatial structure in itself does not provide information about the mechanism of action of drugs.

    In this work, we applied the molecular dynamics method to study the behavior of taxol-bound tubulin oligomers and used our previously developed method for analyzing the conformation of tubulin protofilaments, based on the calculation of modified Euler angles. Recent structures of microtubule fragments have demonstrated that tubulin protofilaments bend not in the radial direction, as many researchers assume, but at an angle of approximately 45◦ from the radial direction. However, in the presence of taxol, the bending direction shifts closer to the radial direction. There was no significant difference between the mean bending and torsion angles of the studied tubulin structures when bound to the various natural regulatory ligands, guanosine triphosphate and guanosine diphosphate. The intra-dimer bending angle was found to be greater than the interdimer bending angle in all analyzed trajectories. This indicates that the bulk of the deformation energy is stored within the dimeric tubulin subunits and not between them. Analysis of the structures of the latest generation of tubulins indicated that the presence of taxol in the tubulin beta subunit pocket allosterically reduces the torsional rigidity of the tubulin oligomer, which could explain the underlying mechanism of taxol’s effect on microtubule dynamics. Indeed, a decrease in torsional rigidity makes it possible to maintain lateral connections between protofilaments, and therefore should lead to the stabilization of microtubules, which is what is observed in experiments. The results of the work shed light on the phenomenon of dynamic instability of microtubules and allow to come closer to understanding the molecular mechanisms of cell division.

  2. Гулеенкова В.Д., Ершова Д.М., Цатурян А.К., Кубасова Н.А.
    Молекулярно-динамическое исследование влияния мутаций в молекуле тропомиозина на свойства тонких нитей сердечной мышцы
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 513-524

    Сокращением поперечно-полосатых мышц управляют регуляторные белки — тропонин и тропомиозин, ассоциированные с тонкими актиновыми нитями в саркомерах. В зависимости от концентрации Ca2+ тонкая нить перестраивается, и тропомиозин смещается по ее поверхности, открывая или закрывая доступ к актину для моторных доменов миозиновых молекул и вызывая сокращение или расслабление соответственно. Известны многочисленные точечные аминокислотные замены в тропомиозине, приводящие к генетическим патологиям — мио- и кардиомиопатиям, что обусловлено изменениями структурных и функциональных свойств тонкой нити. Представлены результаты молекулярно-динамического моделирования фрагмента тонкой нити саркомеров сердечной мышцы, образованной фибриллярным актином и тропомиозином дикого типа или тропомиозином с аминокислотными заменами: двойной стабилизирующей D137L/G126R либо кардиомиопатической S215L. Для расчетов использовали новую модель фрагмента тонкой нити, содержащую 26 мономеров актина и 4 димера тропомиозина, с уточненной структурой области перекрытия соседних молекул тропомиозина в каждом из двух тропомиозиновых тяжей. Результаты моделирования показали, что добавление тропомиозина к нити актина существенно увеличивает ее изгибную жесткость, как было ранее найдено экспериментально. Двойная стабилизирующая замена D137L/G126R приводит к дальнейшему увеличению изгибной жесткости нити, а замена S215L, наоборот, — к ее снижению, что также соответствует экспериментальным данным. В то же время эти замены по-разному влияют на угловую подвижность актиновой спирали и лишь не значительно модулируют угловую подвижность тропомиозиновых тяжей по отношению к спирали актина и населенность в одородных связей между отрицательно заряженными остатками тропомиозина и положительно заряженными остатками актина. Результаты верификации модели показали, что ее качество достаточно для того, чтобы проводить численное исследование влияния одиночных аминокислотных замен на структуру и динамику тонких нитей и изучать эффекты, приводящие к нарушениям регуляции мышечного сокращения. Эта модель может быть использована как полезный инструмент выяснения молекулярных механизмов некоторых известных генетических заболеваний и оценки патогенности недавно обнаруженных генетических вариантов.

    Guleenkova V.D., Ershova D.M., Tsaturyan A.K., Koubassova N.A.
    Molecular dynamics study of the effect of mutations in the tropomyosin molecule on the properties of thin filaments of the heart muscle
    Computer Research and Modeling, 2024, v. 16, no. 2, pp. 513-524

    Muscle contraction is controlled by Ca2+ ions via regulatory proteins, troponin and tropomyosin, associated with thin actin filaments in sarcomeres. Depending on the Ca2+ concentration, the thin filament rearranges so that tropomyosin moves along its surface, opening or closing access to actin for the motor domains of myosin molecules, and causing contraction or relaxation, respectively. Numerous point amino acid substitutions in tropomyosin are known, leading to genetic pathologies — myo- and cardiomyopathies caused by changes in the structural and functional properties of the thin filament. The results of molecular dynamics modeling of a fragment of a thin filament of cardiac muscle sarcomeres formed by fibrillar actin and wildtype tropomyosin or with amino acid substitutions: the double stabilizing substitution D137L/G126R and the cardiomyopathic substitution S215L are presented. For numerical calculations, we used a new model of a thin filament fragment containing 26 actin monomers and 4 tropomyosin dimers, with a refined structure of the region of overlap of neighboring tropomyosin molecules in each of the two tropomyosin strands. The simulation results showed that tropomyosin significantly increases the bending stiffness of the thin filament, as previously found experimentally. The double stabilizing replacement D137L/G126R leads to a further increase in this rigidity, and the replacement S215L, on the contrary, leads to its decrease, which also corresponds to experimental data. At the same time, these substitutions have different effects on the angular mobility of the actin helix and only slightly modulate the angular mobility of tropomyosin cables relative to the actin helix and the population of hydrogen bonds between negatively charged tropomyosin residues and positively charged actin residues. The results of the verification of the new model demonstrate that its quality is sufficient for the numerical study of the effect of single amino acid substitutions on the structure and dynamics of thin filaments and study the effects leading to dysregulation of muscle contraction. This model can be used as a useful tool for elucidating the molecular mechanisms of some genetic diseases and assessing the pathogenicity of newly discovered genetic variants.

  3. Лихачев И.В., Галзитская О.В., Балабаев Н.К.
    Исследование механических свойств C-кадгерина методом молекулярной динамики
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 727-735

    В настоящей работе исследуется механическая стабильность белка клеточной адгезии, кадгерина, методом молекулярной динамики с использованием явной модели растворителя. Было проведено моделирование разворачивания белка за концы с постоянной скоростью для апоформы белка и при наличии в ней ионов разных типов (Ca2+, Mg2+, Na+, K+). Было выполнено по 8 независимых вычислительных экспериментов для каждой формы белка и показано, что одновалентные ионы меньше стабилизируют структуру, чем двухвалентные при механическом разворачивании молекулы кадгерина за концы. Модельная система из двух аминокислот и иона металла между ними в опытах по растяжению демонстрирует свойства аналогичные поведению кадгерина: cистемы с ионами калия и натрия обладают меньшей механической стабильностью на внешнее силовое воздействие в сравнении с системами с кальцием и магнием.

    Lihachev I.V., Galzitskaya O.V., Balabaev N.K.
    Investigation of C-Cadherin mechanical properties by Molecular Dynamics
    Computer Research and Modeling, 2013, v. 5, no. 4, pp. 727-735

    The mechanical stability of cell adhesion protein Cadherin with explicit model of water is studied by the method of molecular dynamics. The protein in apo-form and with the ions of different types (Ca2+, Mg2+, Na+, K+) was unfolding with a constant speed by applying the force to the ends. Eight independent experiments were done for each form of the protein. It was shown that univalent ions stabilize the structure less than bivalent one under mechanical unfolding of the protein. A model system composed of two amino acids and the metal ion between them demonstrates properties similar to that of the cadherin in the stretching experiments. The systems with potassium and sodium ions have less mechanical stability then the systems with calcium and magnesium ions.

    Просмотров за год: 5.
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.