Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Структурные модели изделия в автоматизированных системах проектирования
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.
Ключевые слова: computer aided assembly planning (CAAP, автоматизированное проектирование процессов сборки), гиперграфовая модель структуры изделия, стягивание, механическая структура, условия стягиваемости, решеточная модель.
Structural models of product in CAD-systems
Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1079-1091Computer-aided assembly planning of complex products is an important area of modern information technology. The sequence of assembly and decomposition of the product into assembly units largely depend on the mechanical structure of a technical system (machine, mechanical device, etc.). In most modern research, the mechanical structure of products is modeled using a graph of connections and its various modifications. The coordination of parts during assembly can be achieved by implementing several connections at the same time. This generates a $k$-ary basing relation on a set of product parts, which cannot be correctly described by graph means. A hypergraph model of the mechanical structure of a product is proposed. Modern discrete manufacturing uses sequential coherent assembly operations. The mathematical description of such operations is the normal contraction of edges of the hypergraph model. The sequence of contractions that transform the hypergraph into a point is a description of the assembly plan. Hypergraphs for which such a transformation exists are called $s$-hypergraphs. $S$-hypergraphs are correct mathematical models of the mechanical structures of any assembled products. A theorem on necessary conditions for the contractibility of $s$-hypergraphs is given. It is shown that the necessary conditions are not sufficient. An example of a noncontractible hypergraph for which the necessary conditions are satisfied is given. This means that the design of a complex technical system may contain hidden structural errors that make assembly of the product impossible. Therefore, finding sufficient conditions for contractibility is an important task. Two theorems on sufficient conditions for contractibility are proved. They provide a theoretical basis for developing an efficient computational procedure for finding all $s$-subgraphs of an $s$-hypergraph. An $s$-subgraph is a model of any part of a product that can be assembled independently. These are, first of all, assembly units of various levels of hierarchy. The set of all $s$-subgraphs of an $s$-hypergraph, ordered by inclusion, is a lattice. This model can be used to synthesize all possible sequences of assembly and disassembly of a product and its components. The lattice model of the product allows you to analyze geometric obstacles during assembly using algebraic means.
-
Анализ механических структур сложных технических систем
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 903-916Работа посвящена структурному анализу сложных технических систем. Рассматриваются механические структуры, свойства которых влияют на поведение изделия в процессе сборки, ремонта и эксплуатации. Основным источником данных о деталях и механических связях между ними является гиперграф. Эта модель формализует многоместное отношение базирования. Она корректно описывает связность и взаимную координацию деталей, которые достигаются в процессе сборки изделия. При разработке сложных изделий в CAD-системах инженер часто допускает тяжелые проектные ошибки: перебазирование деталей и несеквенциальность сборочных операций. Предложены эффективные способы идентификации данных структурных дефектов. Показано, что свойство независимой собираемости можно представить как оператор замыкания на булеане множества деталей изделия. Образы этого оператора представляют собой связные координированные совокупности деталей, которые можно собрать независимо. Описана решеточная модель, которая представляет собой пространство состояний изделия в процессе сборки, разборки и декомпозиции на сборочные единицы. Решеточная модель служит источником разнообразной структурной информации о проекте. Предложены численные оценки мощности множества допустимых альтернатив в задачах выбора последовательности сборки и декомпозиции на сборочные единицы. Для многих технических операций (например, контроль, испытания и др.) необходимо монтировать все детали-операнды в одну сборочную единицу. Разработана простая формализация технических условий, требующих включения (исключения) деталей в сборочную единицу (из сборочной единицы). Приведена теорема, которая дает математическое описание декомпозиции изделия на сборочные единицы в точных решеточных терминах. Предложен способ численной оценки робастности механической структурыс ложной технической системы.
Ключевые слова: механическая структура, структурный анализ, автоматизированное проектирование, гиперграфовая модель структуры, решеточная модель изделия.
Analysis of mechanical structures of complex technical systems
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 903-916The work is devoted to the structural analysis of complex technical systems. Mechanical structures are considered, the properties of which affect the behavior of products during assembly, repair and operation. The main source of data on parts and mechanical connections between them is a hypergraph. This model formalizes the multidimensional basing relation. The hypergraph correctly describes the connectivity and mutual coordination of parts, which is achieved during the assembly of the product. When developing complex products in CAD systems, an engineer often makes serious design mistakes: overbasing of parts and non-sequential assembly operations. Effective ways of identifying these structural defects have been proposed. It is shown that the property of independent assembly can be represented as a closure operator whose domain is the boolean of the set of product parts. The images of this operator are connected and coordinated subsets of parts that can be assembled independently. A lattice model is described, which is the state space of the product during assembly, disassembly and decomposition into assembly units. The lattice model serves as a source of various structural information about the project. Numerical estimates of the cardinality of the set of admissible alternatives in the problems of choosing an assembly sequence and decomposition into assembly units are proposed. For many technical operations (for example, control, testing, etc.), it is necessary to mount all the operand parts in one assembly unit. A simple formalization of the technical conditions requiring the inclusion (exclusion) of parts in the assembly unit (from the assembly unit) has been developed. A theorem that gives an mathematical description of product decomposition into assembly units in exact lattice terms is given. A method for numerical evaluation of the robustness of the mechanical structure of a complex technical system is proposed.
-
Численное моделирование когерентных и турбулентных структур излучения методом нелинейных интегральных отображений
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 979-992Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.
Ключевые слова: дискретные отображения, интегральные преобразования, солитоны, вихри, фронты переключения, вихревые решетки, хаос, турбулентность.
Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.
Keywords: discrete maps, integral transforms, solitons, vortices, switching waves, vortex lattices, chaos, turbulence.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"