Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'integral transforms':
Найдено статей: 14
  1. Яковенко Г.Н.
    Блуждающие симметрии уравнений Лагранжа
    Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 13-17

    Динамический процесс в равной степени адекватно моделируется семейством уравнений Лагранжа. Группа симметрий блуждает по этому семейству: системы переходят одна в другую. При определенных условиях по нескольким таким группам простыми вычислениями можно получить первый интеграл. Основная цель работы – показать полезность понятия блуждающей симметрии. Рассмотрен пример: плоское движение заряженной частицы в магнитном поле при наличии вязкого трения. При помощи трех блуждающих симметрий вычисляется первый интеграл.

    Yakovenko G.N.
    Wandering symmetries of the Lagrange's equations
    Computer Research and Modeling, 2010, v. 2, no. 1, pp. 13-17

    The dynamic process can be in equal degree adequately prototyped by a family of Lagrange's systems. Symmetry group ‘wanders’ on this family: systems are transformed from one into another. In this work we show that under determined condition the first integral can be obtained by a simple calculations on some of such groups. The main purpose of the work is to show usefulness of wandering symmetry concept. The considered example: flat motion of a charged particle in magnetic field in presence of viscous friction. With the help of three wandering symmetry first integral is calculated.

    Просмотров за год: 4.
  2. Яковенко Г.Н.
    Симметрии уравнения Гамильтона–Якоби
    Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 253-265

    Вводится понятие преобразования симметрии уравнения Гамильтона–Якоби. Для группы симметрий показывается, как должны быть связаны с функцией Гамильтона коэффициенты инфинитезимального оператора группы. Приводятся примеры вычисления симметрий и примеры вычисления на основе симметрии полных интегралов.

    Yakovenko G.N.
    Symmetries of the Hamilton–Jacobi equation
    Computer Research and Modeling, 2012, v. 4, no. 2, pp. 253-265

    The notion of symmetry transformations of the Hamilton–Jacobi equation. For the group of symmetries is shown how to be associated with the Hamiltonian function coefficients of the infinitesimal operator of the group. The examples of calculation of the symmetries and examples calculations based on the full symmetry of the integrals.

    Просмотров за год: 1. Цитирований: 1 (РИНЦ).
  3. Показано, что для различных баллистических профилей во всем скоростном пространстве сила сопротивления изменяется со скоростью V по закону R(V)=Mg·w(V/WT)n(V), где WT — близкая к звуковой пороговая скорость, w=R(WT), n(V) — значение показателя в кусочно-степенной формуле. Методом, базирующимся на преобразованиях Лежандра, найдена отражающая пик n(V) поправка к невозмущенной резольвентной функции f(b)=abb'', a(b) — подкасательная к траектории, b=tgθ — ее наклон.

    It is shown that the relative air drag force for many different ballistic profiles obeys the law as follows R(V)=Mg·w(V/WT)n(V) with V being the velocity, WT — some threshold velocity close to that of sound, w equals to R(WT) and n(V) is the exponent in broken power Gȃvre formula. Using the Legendre transformation and in frames of perturbation approach received was the expression for addition δabb''(bto resolvent function abb''(b), where a(b) is an intercept and b=tgθ, θ — inclination angle.

  4. Бреев А.И., Шаповалов А.В., Козлов А.В.
    Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443

    В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.

    Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.

    В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.

    Breev A.I., Shapovalov A.V., Kozlov A.V.
    Integration the relativistic wave equations in Bianchi IX cosmology model
    Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443

    We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.

    Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.

    The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.

    Просмотров за год: 5.
  5. Ровенская О.Г.
    Приближение аналитических функций повторными суммами Валле Пуссена
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 367-377

    Работа посвящена вопросам приближения периодических функций высокой гладкости средними арифметическими суммами Фурье. Наиболее естественным и простым примером линейного процесса аппроксимации непрерывных периодических функций действительной переменной является приближение элементами последовательностей частичных сумм ряда Фурье. Известно, что последовательности частичных сумм ряда Фурье не являются равномерно сходящимися на всем пространстве C 2$\pi$-периодических непрерывных функций. Значительное число работ данного направления посвящено изучению аппроксимативных свойств методов приближения, которые для заданной функции $f$ образуются с помощью преобразований частичных сумм ее ряда Фурье и позволяют построить последовательности тригонометрических полиномов, которые равномерно сходятся для каждой функции $f \in C$. На протяжении последних десятилетий широко изучаются суммы Валле Пуссена и их частные случаи суммы Фейера. Одним из наиболее важных направлений в этой области является изучение асимптотического поведения верхних граней уклонений средних арифметических сумм Фурье по различным классам периодических функций. Методы исследования интегральных представлений уклонений тригонометрических полиномов, которые порождаются линейными методами суммирования рядов Фурье, возникли и получили свое развитие в работах С.М. Никольского, С.Б. Стечкина, Н.П. Корнейчука, В.К. Дзядыка и их учеников.

    Целью работы является систематизация известных результатов, касающихся приближения классов периодических функций высокой гладкости средними арифметическими суммами Фурье, и представление новых фактов, полученных для их частных случаев. Изучены аппроксимативные свойства тригонометрических полиномов, порождаемых повторным применением метода суммирования Валле Пуссена, на классах периодических функций, которые можно регулярно продолжить в фиксированную полосу комплексной плоскости. Получены асимптотические формулы для верхних граней уклонений в равномерной метрике $r$-повторных сумм Валле Пуссена на классах аналитических периодических функций. Указаны условия, при которых повторные суммы Валле Пуссена обеспечивают лучший порядок приближения, чем обычные.

    Rovenska O.G.
    Approximation of analytic functions by repeated de la Vallee Poussin sums
    Computer Research and Modeling, 2019, v. 11, no. 3, pp. 367-377

    The paper deals with the problems of approximation of periodic functions of high smoothness by arithmetic means of Fourier sums. The simplest and natural example of a linear process of approximation of continuous periodic functions of a real variable is the approximation of these functions by partial sums of the Fourier series. However, the sequences of partial Fourier sums are not uniformly convergent over the entire class of continuous $2\pi$-periodic functions. In connection with this, a significant number of papers is devoted to the study of the approximative properties of other approximation methods, which are generated by certain transformations of the partial sums of Fourier series and allow us to construct sequences of trigonometrical polynomials that would be uniformly convergent for each function $f \in C$. In particular, over the past decades, de la Vallee Poussin sums and Fejer sums have been widely studied. One of the most important directions in this field is the study of the asymptotic behavior of upper bounds of deviations of arithmetic means of Fourier sums on different classes of periodic functions. Methods of investigation of integral representations of deviations of polynomials on the classes of periodic differentiable functions of real variable originated and received its development through the works of S.M. Nikol’sky, S.B. Stechkin, N.P. Korneichuk, V.K. Dzadyk, etc.

    The aim of the work systematizes known results related to the approximation of classes of periodic functions of high smoothness by arithmetic means of Fourier sums, and presents new facts obtained for particular cases. In the paper is studied the approximative properties of $r$-repeated de la Vallee Poussin sums on the classes of periodic functions that can be regularly extended into the fixed strip of the complex plane. We obtain asymptotic formulas for upper bounds of the deviations of repeated de la Vallee Poussin sums taken over classes of periodic analytic functions. In certain cases, these formulas give a solution of the corresponding Kolmogorov–Nikolsky problem. We indicate conditions under which the repeated de la Vallee Poussin sums guarantee a better order of approximation than ordinary de la Vallee Poussin sums.

    Просмотров за год: 45.
  6. Антипова С.А., Воробьев А.А.
    Целенаправленная трансформация математических моделей на основе стратегической рефлексии
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 815-831

    Исследование сложных процессов в различных сферах человеческой деятельности традиционно основывается на использовании математических моделей. В современных условиях разработка и применение подобных моделей существенно упрощаются наличием быстродействующих средств вычислительной техники и специализированных инструментальных средств, позволяющих, по существу, конструировать модели из заранее подготовленных модулей. Несмотря на это, известные проблемы, связанные с обеспечением адекватности модели, достоверности исходных данных, реализацией на практике результатов моделирования, чрезмерно большой размерностью исходных данных, совместным применением достаточно разнородных математических моделей в условиях усложнения и интеграции моделируемых процессов, приобретают растущую актуальность. Еще более критичными могут являться внешние ограничения, накладываемые на значение оптимизируемого функционала и нередко не достижимые в рамках построенной модели. Логично предположить, что для выполнения этих ограничений необходима целенаправленная трансформация исходной модели, то есть переход к математической модели с заведомо «улучшенным» решением. Новая модель, очевидно, будет иметь иную внутреннюю структуру (совокупность параметров и их взаимосвязи), а также иные форматы (области определения) исходных данных. Исследованные авторами возможности целенаправленного изменения первоначальной модели основаны на реализации идеи стратегической рефлексии.

    В математическом плане практическая реализация авторского замысла оказывается наиболее сложной при использовании имитационных моделей, для которых алгоритмы поиска оптимальных решений имеют известные ограничения, а исследование на чувствительность в большинстве случаев весьма затруднительно. На примере рассмотрения достаточно стандартной дискретно-событийной имитационной модели в статье приводятся типовые методические приемы, позволяющие осуществить ранжирование вариабельных параметров по чувствительности и в дальнейшем расширить область определения вариабельного параметра, к которому имитационная модель наиболее чувствительна. При переходе к «улучшенной» модели возможно также одновременное исключение из нее параметров, влияние которых на оптимизируемый функционал несущественно, и, наоборот, введение в модель новых параметров, соответствующих реальным процессам.

    Antipova S.A., Vorobiev A.A.
    The purposeful transformation of mathematical models based on strategic reflection
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 815-831

    The study of complex processes in various spheres of human activity is traditionally based on the use of mathematical models. In modern conditions, the development and application of such models is greatly simplified by the presence of high-speed computer equipment and specialized tools that allow, in fact, designing models from pre-prepared modules. Despite this, the known problems associated with ensuring the adequacy of the model, the reliability of the original data, the implementation in practice of the simulation results, the excessively large dimension of the original data, the joint application of sufficiency heterogeneous mathematical models in terms of complexity and integration of the simulated processes are becoming increasingly important. The more critical may be the external constraints imposed on the value of the optimized functional, and often unattainable within the framework of the constructed model. It is logical to assume that in order to fulfill these restrictions, a purposeful transformation of the original model is necessary, that is, the transition to a mathematical model with a deliberately improved solution. The new model will obviously have a different internal structure (a set of parameters and their interrelations), as well as other formats (areas of definition) of the source data. The possibilities of purposeful change of the initial model investigated by the authors are based on the realization of the idea of strategic reflection. The most difficult in mathematical terms practical implementation of the author's idea is the use of simulation models, for which the algorithms for finding optimal solutions have known limitations, and the study of sensitivity in most cases is very difficult. On the example of consideration of rather standard discrete- event simulation model the article presents typical methodological techniques that allow ranking variable parameters by sensitivity and, in the future, to expand the scope of definition of variable parameter to which the simulation model is most sensitive. In the transition to the “improved” model, it is also possible to simultaneously exclude parameters from it, the influence of which on the optimized functional is insignificant, and vice versa — the introduction of new parameters corresponding to real processes into the model.

  7. Горр Г.В., Щетинина Е.К.
    Новая форма уравнений в моделировании движения тяжелого твердого тела
    Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 873-884

    В динамике тяжелого твердого тела с неподвижной точкой известны различные типы редуцированных уравнений. Поскольку уравнения Эйлера–Пуассона допускают три первых интеграла, то в первом подходе получение новых форм уравнений, как правило, основано на этих интегралах. С их помощью можно систему шести скалярных уравнений преобразовать к системе третьего порядка. Однако редуцированная система при указанном подходе будет иметь особенность в виде радикальных выражений относительно компонент вектора угловой скорости. Это обстоятельство препятствует эффективному применению численных и асимптотических методов исследования решения. Во втором подходе используют различные виды переменных задачи: углы Эйлера, переменные Гамильтона и другие. При таком подходе уравнения Эйлера–Пуассона редуцируются либо к системе дифференциальных уравнений второго порядка, либо к системе, для которой эффективны специальные методы. В статье применен метод нахождения приведенной системы, основанный на введении вспомогательной переменной. Эта переменная характеризует смешанное произведение вектора момента количества движения, вектора вертикали и единичного вектора барицентрической оси тела. Получена система четырех дифференциальных уравнений, два из которых являются линейными дифференциальными уравнениями. Данная система не имеет аналога и не содержит особенностей, что позволяет применять к ней аналитические и численные методы исследования. Указанная форма уравнений применена для анализа специального класса решений в случае, когда центр масс тела принадлежит барицентрической оси. Рассмотрен вариант, при котором сумма квадратов двух компонент вектора кинематического момента относительно небарицентрических осей постоянна. Доказано, что этот вариант имеет место только в решении В.А. Стеклова. Найденная форма уравнений Эйлера–Пуассона может быть применена к исследованию условий существования других классов решений. Определенная перспектива полученных уравнений состоит в записи всех решений, для которых центр масс лежит на барицентрической оси, в переменных данной статьи. Это позволяет провести классификацию решений уравнений Эйлера–Пуассона в зависимости от порядка инвариантных соотношений. Поскольку указанная в статье система уравнений не имеет особенностей, то она может рассматриваться при компьютерном моделировании с помощью численных методов.

    Gorr G.V., Shchetinina E.K.
    A new form of differential equations in modeling of the motion of a heavy solid
    Computer Research and Modeling, 2016, v. 8, no. 6, pp. 873-884

    The different types of the reduced equations are known in the dynamics a heavy rigid body with a fixed point. Since the Euler−Poisson’s equations admit the three first integrals, then for the first approach the obtaining new forms of equations are usually based on these integrals. The system of six scalar equations can be transformed to a third-order system with them. However, in indicated approach the reduced system will have a feature as in the form of radical expressions a relatively the components of the angular velocity vector. This fact prevents the effective the effective application of numerical and asymptotic methods of solutions research. In the second approach the different types of variables in a problem are used: Euler’s angles, Hamilton’s variables and other variables. In this approach the Euler−Poisson’s equations are reduced to either the system of second-order differential equations, or the system for which the special methods are effective. In the article the method of finding the reduced system based on the introduction of an auxiliary variable is applied. This variable characterizes the mixed product of the angular momentum vector, the vector of vertical and the unit vector barycentric axis of the body. The system of four differential equations, two of which are linear differential equations was obtained. This system has no analog and does not contain the features that allows to apply to it the analytical and numerical methods. Received form of equations is applied for the analysis of a special class of solutions in the case when the center of mass of the body belongs to the barycentric axis. The variant in which the sum of the squares of the two components of the angular momentum vector with respect to not barycentric axes is constant. It is proved that this variant exists only in the Steklov’s solution. The obtained form of Euler−Poisson’s equations can be used to the investigation of the conditions of existence of other classes of solutions. Certain perspectives obtained equations consists a record of all solutions for which the center of mass is on barycentric axis in the variables of this article. It allows to carry out a classification solutions of Euler−Poisson’s equations depending on the order of invariant relations. Since the equations system specified in the article has no singularities, it can be considered in computer modeling using numerical methods.

    Просмотров за год: 6.
  8. В работе рассматривается вопрос об улучшении качества изображений, получаемых в задаче томографии. Задача заключается в нахождении границ неоднородностей (включений) в сплошной среде по результатам просвечивания этой среды потоком излучения. Предложено нелинейное интегральное преобразование специального вида, которое позволяет улучшить качество изображений по сравнению с тем, которое получали авторы ряда работ ранее. Метод реализован численно с помощью компьютерного моделирования. Проведено несколько расчетов с использованием данных для конкретных материалов. Полученные при этом результаты представлены рисунками и графическими изображениями.

    Nazarov V.G.
    Improvement of image quality in a computer tomography by means of integral transformation of a special kind
    Computer Research and Modeling, 2015, v. 7, no. 5, pp. 1033-1046

    The question on improvement of quality of images obtained in a tomography problem is considered. The problem consists in finding of boundaries of inhomogeneities (inclusions) in a continuous medium by results of X-ray radiography of this medium. A nonlinear integral transformation of a special kind is proposed which allows to improve quality of images obtained earlier at a set of papers. The method is realized numerically by the use of computer modelling. Some calculations are carried out with use of data for concrete materials. The results obtained are presented by drawings and graphic images.

    Просмотров за год: 6.
  9. Распространение устойчивых когерентных образований электромагнитного поля в нелинейных средах с меняющимися в пространстве параметрами может быть описано в рамках итераций нелинейных интегральных преобразований. Показано что для ряда актуальных геометрий задач нелинейной оптики численное моделирование путем сведения к динамическим системам с дискретным временем и непрерывными пространственными переменными, основанное на итерациях локальных нелинейных отображений Фейгенбаума и Икеды, а также нелокальных диффузионно-дисперсионных линейных интегральных преобразований, эквивалентно в довольно широком диапазоне параметров дифференциальным уравнениям в частных производных типа Гинзбурга–Ландау. Такие нелокальные отображения, представляющие собой при численной реализации произведения матричных операторов, оказываются устойчивыми численно-разностными схемами, обеспечивают быструю сходимость и адекватную аппроксимацию решений. Реалистичность данного подхода позволяет учитывать влияние шумов на нелинейную динамику путем наложения на расчетный массив чисел при каждой итерации пространственного шума, задаваемого в виде многомодового случайного процесса, и производить отбор устойчивых волновых конфигураций. Нелинейные волновые образования, описываемые данным методом, включают оптические фазовые сингулярности, пространственные солитоны и турбулентные состояния с быстрым затуханием корреляций. Определенный интерес представляют полученные данным численным методом периодические конфигурации электромагнитного поля, возникающие в результате фазовой синхронизации, такие как оптические решетки и самоорганизованные вихревые кластеры.

    Okulov A.Y.
    Numerical investigation of coherent and turbulent structures of light via nonlinear integral mappings
    Computer Research and Modeling, 2020, v. 12, no. 5, pp. 979-992

    The propagation of stable coherent entities of an electromagnetic field in nonlinear media with parameters varying in space can be described in the framework of iterations of nonlinear integral transformations. It is shown that for a set of geometries relevant to typical problems of nonlinear optics, numerical modeling by reducing to dynamical systems with discrete time and continuous spatial variables to iterates of local nonlinear Feigenbaum and Ikeda mappings and nonlocal diffusion-dispersion linear integral transforms is equivalent to partial differential equations of the Ginzburg–Landau type in a fairly wide range of parameters. Such nonlocal mappings, which are the products of matrix operators in the numerical implementation, turn out to be stable numerical- difference schemes, provide fast convergence and an adequate approximation of solutions. The realism of this approach allows one to take into account the effect of noise on nonlinear dynamics by superimposing a spatial noise specified in the form of a multimode random process at each iteration and selecting the stable wave configurations. The nonlinear wave formations described by this method include optical phase singularities, spatial solitons, and turbulent states with fast decay of correlations. The particular interest is in the periodic configurations of the electromagnetic field obtained by this numerical method that arise as a result of phase synchronization, such as optical lattices and self-organized vortex clusters.

  10. Предложен новый набор ключевых баллистических параметров: b0 = tgθ0, θ0 — угол вылета, Ra — вершинный радиус кривизны траектории и β0 — безразмерный квадрат разворотной скорости, и на его основе разработан новый прием приближенного интегрирования уравнений динамики материальной точки в среде с квадратичным сопротивлением (α = R/mg = 0,5…1,5) при tgθ0 < 0,5. Способ базируется на преобразованиях Лежандра, и он дает формулы с автоматически подстраиваемой точностью как для текущих координат x(b), y(b) и времени t(b), b = tgθ — текущий наклон траектории, так и для основных параметров (время T, дальность L, положение вершины La) траектории в диапазоне, далеко выходящем за малоугловую область прицельной стрельбы. Точность формул выверялась при помощи продукта Maple.

    New key parameters, namely b0 = tgθ0, θ0 — angle of throwing, Ra — top curvature radius and β0 — dimensionless speed square on the top of low angular trajectory were suggested in classic problem of integrating nonlinear equations of point mass projectile motion with quadratic air drag. Very precise formulae were obtained in a new way for coordinates x(b), y(b) and fly time t(b), b = tgθ where θ is inclination angle. This method is based on Legendre transformation and its precision is automatically improved in wide range of the θ0 values and drag force parameters α. The precision was monitored by Maple computing product.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).
Страницы: следующая

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus