Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Математическое моделирование механизма дифференциации репродуктивных стратегий в естественных популяциях (на примере песцов, Alopex lagopus)
Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 213-228В работе рассматривается комплексный подход к моделированию динамики генетической структуры и численности естественной популяции. Набор динамических моделей с различными типами естественного отбора применен для описания возможного механизма закрепления наблюдаемого в настоящее время генетического разнообразия по размеру помета в прибрежных, континентальных и искусственных популяциях песцов (Alopex lagopus, семейство Canidae, порядок Carnivora). Наиболее интересные результаты удалось получить на основе модели популяции, включающей две стадии развития; при этом анализировалась динамика генетической структуры популяции по генотипам, соответствующим различным репродуктивным способностям и выживаемостям детенышей на ранней стадии жизненного цикла, определяемым одним диаллельным геном. Эта модель позволяет получить мономорфизм по рассматриваемому признаку в популяциях прибрежных песцов, где пищевые ресурсы практически постоянны, и установление полиморфизма с циклическими колебаниями численности и частот аллелей рассматриваемого гена в континентальных популяциях, где происходят регулярные всплески численности грызунов — основного компонента пищи. В искусственных популяциях в результате селективного отбора, осуществляемого фермерами с целью увеличения репродуктивного успеха производителей, рассматриваемый ген оказывается плейотропным (т. е. определяющим выживаемость особей как на ранней, так и на поздней стадии жизненного цикла); применение соответствующей модели (с отбором по плейотропныму гену) позволяет получить адекватную скорость вытеснения аллеля, обуславливающего производство пометов малого размера.
Mathematical modeling of the mechanism of a reproductive strategies differentiation in natural populations (on the example of arctic fox, Alopex lagopus)
Computer Research and Modeling, 2016, v. 8, no. 2, pp. 213-228Просмотров за год: 7. Цитирований: 5 (РИНЦ).This paper considers the integrated approach to modeling the dynamics of genetic structure and the number of natural population. A set of dynamic models with different types of natural selection is used to describe a possible mechanism for the fixing of a genetic diversity in size of the litter in coastal, continental and farmed populations of arctic fox (Alopex lagopus, Canidae, Carnivora) observed now. The most interesting results have been obtained with the model of population consisting of two stages of development. At that with the frame of this model a dynamics of population genetic structure on genotypes was analyzed to consider different reproductive abilities and fitnesses of pups on the early stage of lifecycle which defined by the single diallelic gene. This model allows to receive a monomorphism for coastal populations of arctic fox, where food resources are practically constant. As well the model allows polymorphism with cyclical fluctuations in the number and frequency of the gene in the continental populations due to regular fluctuating of rodent number, the major component of its food. In farmed populations by selective selection carried out by farmers to increase the reproductive success, this gene is a pleiotropic one (i. e., determining the survival rate of individuals both early and late stages of their life cycle); so an application of appropriate model (with the selection of pleiotropic gene) allows to get an adequate rate of elimination for small litters allele.
-
Линейно сходящиеся безградиентные методы для минимизации параболической аппроксимации
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 239-255Нахождение глобального минимума невыпуклых функций — одна из ключевых и самых сложных проблем современной оптимизации. В этой работе мы рассматриваем отдельные классы невыпуклых задач, которые имеют четкий и выраженный глобальный минимум.
В первой части статьи мы рассматриваем два класса «хороших» невыпуклых функций, которые могут быть ограничены снизу и сверху параболической функцией. Такой класс задач не исследован широко в литературе, хотя является довольно интересным с прикладной точки зрения. Более того, для таких задач методы первого и более высоких порядков могут быть абсолютно неэффективны при поиске глобального минимума. Это связано с тем, что функция может сильно осциллировать или может быть сильно зашумлена. Поэтому наши новые методы используют информацию только нулевого порядка и основаны на поиске по сетке. Размер и мелкость этой сетки, а значит, и гарантии скорости сходимости и оракульной сложности зависят от «хорошести» задачи. В частности, мы показываем, если функция зажата довольно близкими параболическими функциями, то сложность не зависит от размерности задачи. Мы показываем, что наши новые методы сходятся с линейной скоростью сходимости $\log(1/\varepsilon)$ к глобальному минимуму на кубе.
Во второй части статьи мы рассматриваем задачу невыпуклой оптимизации с другого ракурса. Мы предполагаем, что целевая минимизируемая функция есть сумма выпуклой квадратичной задачи и невыпуклой «шумовой» функции, пропорциональной по модулю расстоянию до глобального решения. Рассмотрение функций с такими предположениями о шуме для методов нулевого порядка является новым в литературе. Для такой задачи мы используем классический безградиентный подход с аппроксимацией градиента через конечную разность. Мы показываем, как можно свести анализ сходимости для нашей задачи к стандартному анализу для задач выпуклой оптимизации. В частности, и для таких задач мы добиваемся линейной скорости сходимости.
Экспериментальные результаты подтверждают работоспособность и практическую применимость всех полученных методов.
Linearly convergent gradient-free methods for minimization of parabolic approximation
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 239-255Finding the global minimum of a nonconvex function is one of the key and most difficult problems of the modern optimization. In this paper we consider special classes of nonconvex problems which have a clear and distinct global minimum.
In the first part of the paper we consider two classes of «good» nonconvex functions, which can be bounded below and above by a parabolic function. This class of problems has not been widely studied in the literature, although it is rather interesting from an applied point of view. Moreover, for such problems first-order and higher-order methods may be completely ineffective in finding a global minimum. This is due to the fact that the function may oscillate heavily or may be very noisy. Therefore, our new methods use only zero-order information and are based on grid search. The size and fineness of this grid, and hence the guarantee of convergence speed and oracle complexity, depend on the «goodness» of the problem. In particular, we show that if the function is bounded by fairly close parabolic functions, then the complexity is independent of the dimension of the problem. We show that our new methods converge with a linear convergence rate $\log(1/\varepsilon)$ to a global minimum on the cube.
In the second part of the paper, we consider the nonconvex optimization problem from a different angle. We assume that the target minimizing function is the sum of the convex quadratic problem and a nonconvex «noise» function proportional to the distance to the global solution. Considering functions with such noise assumptions for zero-order methods is new in the literature. For such a problem, we use the classical gradient-free approach with gradient approximation through finite differences. We show how the convergence analysis for our problems can be reduced to the standard analysis for convex optimization problems. In particular, we achieve a linear convergence rate for such problems as well.
Experimental results confirm the efficiency and practical applicability of all the obtained methods.
-
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы.
Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.
The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.
-
Вариационный принцип для сплошных сред, обладающих памятью формы, при изменяющихся внешних силах и температуре
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 541-555В рамках феноменологической механики сплошной среды без анализа микрофизики явления рассматривается квазистатическая задача деформирования сплавов с памятью формы. Феноменологический подход основан на сопоставлении двух диаграмм деформирования материалов. Первая диаграмма отвечает активному пропорциональному нагружению, когда сплав ведет себя как идеальный упругопластический материал; после снятия нагрузки фиксируется остаточная деформация. Вторая диаграмма наблюдается, если деформированный образец нагреть до определенной для каждого сплава температуры. Происходит восстановление первоначальной формы: обратная деформация совпадает с точностью до знака с деформациями первой диаграммы. Поскольку первый этап деформирования может быть описан с по- мощью вариационного принципа, для которого доказывается существование обобщенных решений при произвольном нагружении, становится ясным, как объяснить обратную деформацию в рамках слегка видоизмененной теории пластичности. Нужно односвязную поверхность нагружения заменить двусвязной и, кроме того, вариационный принцип дополнить двумя законами термодинамики и принципом ортогональности термодинамических сил и потоков. Доказательство существования решений и в этом случае не встречает затруднений. Успешное применение теории пластичности при постоянной температуре порождает потребность получить аналогичный результат в более общем случае изменяющихся внешних сил и температуры. В работе изучается идеальная упругопластическая модель Мизеса при линейных скоростях деформаций. Учет упрочнения и использование произвольной поверхности нагружения не вызывают дополнительных трудностей.
Формулируется расширенный вариационный принцип типа Рейсснера, который вместе с законами термопластичности позволяет доказать существование обобщенных решений для трехмерных тел, изготовленных из материалов, обладающих памятью формы. Основная трудность, которую приходится преодолевать, состоит в выборе функционального пространства для скоростей и деформаций точек континуума. Для этой цели в статье используется пространство ограниченных деформаций — основной инструмент математической теории пластичности. Процесс доказательства показывает, что принятый в работе выбор функциональных пространств не является единственным. Изучение других возможных расширенных постановок вариационной задачи, наряду с выяснением регулярности обобщенных решений, представляется интересной задачей для будущих исследований.
Ключевые слова: сплошная среда, вариационный принцип, материалы с памятью формы, термопластичность, пространство ограниченной деформации, обобщенные решения.
Variational principle for shape memory solids under variable external forces and temperatures
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 541-555The quasistatic deformation problem for shape memory alloys is reviewed within the phenomenological mechanics of solids without microphysics analysis. The phenomenological approach is based on comparison of two material deformation diagrams. The first diagram corresponds to the active proportional loading when the alloy behaves as an ideal elastoplastic material; the residual strain is observed after unloading. The second diagram is relevant to the case when the deformed sample is heated to a certain temperature for each alloy. The initial shape is restored: the reverse distortion matches deformations on the first diagram, except for the sign. Because the first step of distortion can be described with the variational principle, for which the existence of the generalized solutions is proved under arbitrary loading, it becomes clear how to explain the reverse distortion within the slightly modified theory of plasticity. The simply connected surface of loading needs to be replaced with the doubly connected one, and the variational principle needs to be updated with two laws of thermodynamics and the principle of orthogonality for thermodynamic forces and streams. In this case it is not difficult to prove the existence of solutions either. The successful application of the theory of plasticity under the constant temperature causes the need to obtain a similar result for a more general case of variable external forces and temperatures. The paper studies the ideal elastoplastic von Mises model at linear strain rates. Taking into account hardening and arbitrary loading surface does not cause any additional difficulties.
The extended variational principle of the Reissner type is defined. Together with the laws of thermal plasticity it enables to prove the existence of the generalized solutions for three-dimensional bodies made of shape memory materials. The main issue to resolve is a challenge to choose a functional space for the rates and deformations of the continuum points. The space of bounded deformation, which is the main instrument of the mathematical theory of plasticity, serves this purpose in the paper. The proving process shows that the choice of the functional spaces used in the paper is not the only one. The study of other possible problem settings for the extended variational principle and search for regularity of generalized solutions seem an interesting challenge for future research.
-
Параллельная реализация сеточно-характеристического метода в случае явного выделения контактных границ
Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 667-678В работе рассматривается применение технологии Message Passing Interface (MPI) для распараллеливания программного алгоритма, основанного на сеточно-характеристическом методе, применительно к численному решению уравнения линейной теории упругости. Данный алгоритм позволяет численно моделировать распространение динамических волновых возмущений в твердых деформируемых телах. К такого рода задачам относится решение прямой задачи распространения сейсмических волн, что представляет интерес в сейсмике и геофизике. Во снове решателя лежит сеточно-характеристический метод. В работе предложен способ уменьшения времени взаимодействия между процессами MPI в течение расчета. Это необходимо для того, чтобы можно было производить моделирование в сложных постановках, при этом сохраняя высокую эффективность параллелизма даже при большом количестве процессов. Решение проблемы эффективного взаимодействия представляет большой интерес, когда в расчете используется несколько расчетных сеток с произвольной геометрией контактов между ними. Сложность данной задачи возрастает, если допускается независимое распределение узлов расчетных сеток между процессами. В работе сформулирован обобщенный подход для обработки контактных условий в терминах переинтерполяции узлов из заданного участка одной сетки в определенную область второй сетки. Предложен эффективный способ распараллеливания и установления эффективных межпроцессорных коммуникаций. Приведены результаты работы реализованного программного кода: получены волновые поля и сейсмограммы как для 2D-, так и для 3D-постановок. Показано, что данный алгоритм может быть реализован в том числе на криволинейных расчетных сетках. Рассмотренные постановки демонстрируют возможность проведения расчета с учетом топографии среды и криволинейных контактов между слоями. Это позволяет получать более точные результаты, чем при расчете только с использованием декартовых сеток. Полученная эффективность распараллеливания — практически 100% вплоть до 4096 процессов (за основу отсчета взята версия, запущенная на 128 процессах). Дале наблюдается ожидаемое постепенное снижение эффективности. Скорость спада не велика, на 16384 процессах удается сохранить 80%-ную эффективность.
Ключевые слова: параллельное программирование, сеточно-характеристический метод, MPI, структурированные сетки.
Parallel implementation of the grid-characteristic method in the case of explicit contact boundaries
Computer Research and Modeling, 2018, v. 10, no. 5, pp. 667-678Просмотров за год: 18.We consider an application of the Message Passing Interface (MPI) technology for parallelization of the program code which solves equation of the linear elasticity theory. The solution of this equation describes the propagation of elastic waves in demormable rigid bodies. The solution of such direct problem of seismic wave propagation is of interest in seismics and geophysics. Our implementation of solver uses grid-characteristic method to make simulations. We consider technique to reduce time of communication between MPI processes during the simulation. This is important when it is necessary to conduct modeling in complex problem formulations, and still maintain the high level of parallelism effectiveness, even when thousands of processes are used. A solution of the problem of effective communication is extremely important when several computational grids with arbirtrary geometry of contacts between them are used in the calculation. The complexity of this task increases if an independent distribution of the grid nodes between processes is allowed. In this paper, a generalized approach is developed for processing contact conditions in terms of nodes reinterpolation from a given section of one grid to a certain area of the second grid. An efficient way of parallelization and establishing effective interprocess communications is proposed. For provided example problems we provide wave fileds and seismograms for both 2D and 3D formulations. It is shown that the algorithm can be realized both on Cartesian and on structured (curvilinear) computational grids. The considered statements demonstrate the possibility of carrying out calculations taking into account the surface topographies and curvilinear geometry of curvilinear contacts between the geological layers. Application of curvilinear grids allows to obtain more accurate results than when calculating only using Cartesian grids. The resulting parallelization efficiency is almost 100% up to 4096 processes (we used 128 processes as a basis to find efficiency). With number of processes larger than 4096, an expected gradual decrease in efficiency is observed. The rate of decline is not great, so at 16384 processes the parallelization efficiency remains at 80%.
-
От локальной би- и квадростабильности к пространственно-временной неоднородности: обзор математических моделей и содержательные следствия
Компьютерные исследования и моделирование, 2023, т. 15, № 1, с. 75-109Бистабильность обнаруживается во множестве прикладных и теоретических исследований биологических систем (популяций, сообществ). В простейшем случае бистабильность проявляется в сосуществовании двух альтернативных устойчивых состояний равновесия системы, выбор между которыми зависит от начальных условий. Наличие бистабильности в простых моделях может привести к появлению квадростабильности при усложнении моделей, например при учете генетической, возрастной и пространственной структуры. Это обнаруживается в разных моделях и весьма разных содержательных задачах и, как правило, приводит к весьма интересным, часто контринтуитивным выводам. Обзору таких ситуаций посвящена данная работа. В ней рассмотрены бифуркации, приводящие к би- и квадростабильности в математических моделях следующих биологических объектов: система двух миграционно связанных популяций, находящихся под действием естественного отбора, все генетическое разнообразие которых представлено единственным диаллельным локусом с существенной разницей в приспособленностях для гомо- и гетерозигот; система двух миграционно связанных лимитированных популяций, описываемых моделью Базыкина или моделью Рикера; популяция с двумя стадиями развития и плотностно-зависимой регуляцией рождаемости, которая либо определяется только плотностью, либо дополнительно зависит от генетической структуры смежных поколений. Обнаружено, что все перечисленные модели имеют схожие сценарии рождения состояний равновесий, которые соответствуют формированию пространственно-временной неоднородности либо дифференциации особей разных поколений по признакам (первичной генетической дивергенции). Показано, что такая неоднородность является следствием локальной бистабильности и появляется в результате комбинации бифуркации вил (удвоения периода) и седло-узловой бифуркации.
Ключевые слова: популяция, динамика, возрастная структура, миграция, генетическая дивергенция, бистабильность, бифуркации.
From local bi- and quadro-stability to space-time inhomogeneity: a review of mathematical models and meaningful conclusions
Computer Research and Modeling, 2023, v. 15, no. 1, pp. 75-109Bistability is a fundamental property of nonlinear systems and is found in many applied and theoretical studies of biological systems (populations and communities). In the simplest case it is expressed in the coexistence of diametrically opposed alternative stable equilibrium states of the system, and which of them will be achieved depends on the initial conditions. Bistability in simple models can lead to quad-stability as models become more complex, for example, when adding genetic, age and spatial structure. This occurs in different models from completely different subject area and leads to very interesting, often counterintuitive conclusions. In this article, we review such situations. The paper deals with bifurcations leading to bi- and quad-stability in mathematical models of the following biological objects. The first one is the system of two populations coupled by migration and under the action of natural selection, in which all genetic diversity is associated with a single diallelic locus with a significant difference in fitness for homo- and heterozygotes. The second is the system of two limited populations described by the Bazykin model or the Ricker model and coupled by migration. The third is a population with two age stages and density-dependent regulation of birth rate which is determined either only by population density, or additionally depends on the genetic structure of adjacent generations. We found that all these models have similar scenarios for the birth of equilibrium states that correspond to the formation of spatiotemporal inhomogeneity or to the differentiation by phenotypes of individuals from different age stages. Such inhomogeneity is a consequence of local bistability and appears as a result of a combination of pitchfork bifurcation (period doubling) and saddle-node bifurcation.
Keywords: population, dynamics, age structure, migration, genetic divergence, bistability, bifurcations. -
Математическая модель системы «паразит – хозяин» с распределенным временем сохранения иммунитета
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 695-711Пандемия COVID-19 вызвала рост интереса к математическим моделям эпидемического процесса, так как только статистический анализ заболеваемости не позволяет проводить среднесрочное прогнозирование в условиях быстро меняющейся ситуации.
Среди специфичных особенностей COVID-19, которые нужно учитывать в математических моделях, можно отметить гетерогенность возбудителя, неоднократные смены доминирующего варианта SARS-CoV-2 и относительную кратковременность постинфекционного иммунитета.
В связи с этим были аналитически изучены решения системы дифференциальных уравнений для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета, а также проведены численные расчеты для динамики системы при средней длительности постинфекционного иммунитета порядка года.
Для модели класса SIR с гетерогенной длительностью постинфекционного иммунитета было доказано, что любое решение можно неограниченно продолжать по времени в положительную сторону без выхода за область определения системы.
Для контактного числа $R_0 \leqslant 1$ все решения стремятся к единственномут ривиальному стационарному решению с нулевой долей инфицированных, а для $R_0 > 1$ кроме тривиального решения существует и нетривиальное стационарное решение с ненулевыми долями инфицированных и восприимчивых. Были доказаны существование и единственность нетривиального стационарного решения при $R_0 > 1$, а также доказано, что оно является глобальным аттрактором.
Также для нескольких вариантов гетерогенности были вычислены собственные числа для скорости экспоненциальной сходимости малых отклонений от нетривиального стационарного решения.
Получено, что при значениях контактного числа, соответствующих COVID-19, фазовая траектория имеет вид скручивающейся спирали с длиной периода порядка года.
Это соответствует реальной динамике заболеваемости COVID-19, при которой после нескольких месяцев роста заболеваемости начинается период его падения. При этом второй волны заболеваемости меньшей амплитуды, что предсказывала модель, не наблюдалось, так как на протяжении 2020–2023 годов примерно каждые полгода появлялся новый вариант SARS-CoV-2, имеющий большую заразность, чем предыдущий, в результате чего новый вариант вытеснял предыдущий и становился доминирующим.
Ключевые слова: система «паразит – хозяин», коронавирусная инфекция, эпидемический процесс, гетерогенная популяция.
Mathematical model of the parasite – host system with distributed immunity retention time
Computer Research and Modeling, 2024, v. 16, no. 3, pp. 695-711The COVID-19 pandemic has caused increased interest in mathematical models of the epidemic process, since only statistical analysis of morbidity does not allow medium-term forecasting in a rapidly changing situation.
Among the specific features of COVID-19 that need to be taken into account in mathematical models are the heterogeneity of the pathogen, repeated changes in the dominant variant of SARS-CoV-2, and the relative short duration of post-infectious immunity.
In this regard, solutions to a system of differential equations for a SIR class model with a heterogeneous duration of post-infectious immunity were analytically studied, and numerical calculations were carried out for the dynamics of the system with an average duration of post-infectious immunity of the order of a year.
For a SIR class model with a heterogeneous duration of post-infectious immunity, it was proven that any solution can be continued indefinitely in time in a positive direction without leaving the domain of definition of the system.
For the contact number $R_0 \leqslant 1$, all solutions tend to a single trivial stationary solution with a zero share of infected people, and for $R_0 > 1$, in addition to the trivial solution, there is also a non-trivial stationary solution with non-zero shares of infected and susceptible people. The existence and uniqueness of a non-trivial stationary solution for $R_0 > 1$ was proven, and it was also proven that it is a global attractor.
Also, for several variants of heterogeneity, the eigenvalues of the rate of exponential convergence of small deviations from a nontrivial stationary solution were calculated.
It was found that for contact number values corresponding to COVID-19, the phase trajectory has the form of a twisting spiral with a period length of the order of a year.
This corresponds to the real dynamics of the incidence of COVID-19, in which, after several months of increasing incidence, a period of falling begins. At the same time, a second wave of incidence of a smaller amplitude, as predicted by the model, was not observed, since during 2020–2023, approximately every six months, a new variant of SARS-CoV-2 appeared, which was more infectious than the previous one, as a result of which the new variant replaced the previous one and became dominant.
-
Квантовые и классические модели в применении к задаче биологической активности о переходе частиц через нестационарные барьеры
Компьютерные исследования и моделирование, 2009, т. 1, № 3, с. 337-351Большинство биологических задач находятся в области температур, где квантовые и классические эффекты равноценны или в классической области, где квантовые эффекты проступают как незначительные добавки или модуляции. Степень проявления квантового и классического режимов рассмотрена в работе на примере одной из важнейших задач биологической активности молекул - задачи о переходах частиц через барьеры. Подходя к задаче о переходе частицы через нестационарный барьер (с параметрами, характерными для биологических проблем) с различных позиций (квантовой и классической), мы получили одинаковый результат: динамика частицы характеризуется релаксацией за время, сравнимое с диффузионным.
Ключевые слова: биологическая активность молекул, переход частиц через барьеры.
Quantum and classical approaches to a biological problem of particle transition through non-stationary barriers
Computer Research and Modeling, 2009, v. 1, no. 3, pp. 337-351Цитирований: 1 (РИНЦ).The most part of biological tasks coincide with temperature areas, where quantum and classical effects are equivalent, or the classical one is dominating. The extent of influence of quantum or classical effect was considered in the work in application to one of the most significant problems of biological activity: particle transition through non-stationary barriers. It is interesting that the results obtained using different approaches, quantum and classical, are the same. It seems that the particle dynamics is characterized by non-coherent relaxation with rate of diffusion.
-
Моделирование конформационного перехода в фотосинтетическом реакционном центре бактерии Rb. sphaeroides
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 437-448Методом квантово-химического моделирования исследован возможный конформационный переход в локальном окружении первичного хинона в фотосинтетическом реакционном центре (РЦ) бактерии Rhodobacter sphaeroides, сопровождающий процесс переноса электрона. Исходя из представления о наличии двух устойчивых конформационных состояний РЦ, предложена кинетическая модель, хорошо описывающая экспериментальные температурные зависимости скорости реакции рекомбинации P+QA- → PQA. Результаты квантово-химического моделирования сайта связывания первичного хинона позволяют предложить на роль указанного конформационного изменения небольшое смещение кольца убихинона, приводящее к разрыву водородной связи, образуемой 4–C=O группой убихинона с гистидином M219, и образованию новой водородной связи с гидроксильной группой треонина M222. Значения параметров модели, полученные с помощью квантово-химических расчетов, качественно согласуются со значениями параметров кинетической модели, используемых для описания реакции рекомбинации.
Ключевые слова: Rhodobacter sphaeroides, фотосинтетический центр, конформационный переход, реакция рекомбинации.
Modelling of conformational change within photosynthetic reaction center of Rb. sphaeroides bacteria
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 437-448Просмотров за год: 2.A possible conformational change, which accompanies electron tranport in Rb. sphaeroides photosynthetic reaction center (RC), was studied using quantum-chemical approach. A kinetic model which takes into account two conformational states of RC is proposed. The model quantitatively describes experimental temperature dependencies of recombination reaction rate P+QA- → PQA. Quantum-chemical modeling of primary quinone (QA) binding site permits one to propose a minor shift of QA as a conformational change of interest. The shift is accompanied by break of a hydrogen bond between 4–C=O group of QA and histidine M219, and formation of a new hydrogen bond between QA and hydroxyl group of threonine M222. Characteristics of this conformational change were obtained from quantum-chemical calculations and match parameters of kinetic model in qualitative fashion.
-
Задача выживаемости для математической модели терапии глиомы с учетом гематоэнцефалического барьера
Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 113-123В статье предлагается математическая модель терапии глиомы с учетом гематоэнцефалического барьера, радиотерапии и терапии антителами. Проведена оценка параметров по экспериментальным данным, а также оценка влияния значений параметров на эффективность лечения и прогноз болезни. Исследованы возможные варианты последовательного применения радиотерапии и воздействия антител. Комбинированное применение радиотерапии с внутривенным введением $mab$ $Cx43$ приводит к потенцированию терапевтического эффекта при глиоме. Радиотерапия должна предшествовать химиотерапии, поскольку радиовоздействие уменьшает барьерную функцию эндотелиальных клеток. Эндотелиальные клетки сосудовмоз га плотно прилегают друг к другу. Между их стенками образуются так называемые плотные контакты, роль которых во беспечении ГЭБ состоит в том, что они предотвращают проникновение в ткань мозга различных нежелательных веществ из кровеносного русла. Плотные контакты между эндотелиальными клетками блокируют межклеточный пассивный транспорт.
Математическая модель состоит из непрерывной части и дискретной. Экспериментальные данные объема глиомы показывают следующую интересную динамику: после прекращения радиовоздействия рост опухоли не возобновляется сразу же, а существует некоторый промежуток времени, в течение которого глиома не растет. Клетки глиомы разделены на две группы. Первая группа — живые клетки, делящиеся с максимально возможной скоростью. Вторая группа — клетки, пострадавшие от радиации. В качестве показателя здоровья системы гематоэнцефалического барьера выбрано отношение количества клеток ГЭБ вт екущий момент к количеству клеток всо стоянии покоя, то есть всре днем здоровом состоянии.
Непрерывная часть модели включает в себя описание деления обоих типов клеток глиомы, восстановления клеток ГЭБ, а также динамику лекарственного средства. Уменьшение количества хорошо функционирующих клеток ГЭБ облегчает проникновение лекарственного средства к клеткам мозга, то есть усиливает действие лекарства. При этом скорость деления клеток глиомы не увеличивается, поскольку ограничена не дефицитом питательных веществ, доступных клеткам, а внутренними механизмами клетки. Дискретная часть математической модели включает в себя оператор радиовоздействия, который применяется к показателю ГЭБ и к глиомным клеткам.
В рамках математической модели лечения раковой опухоли (глиомы) решается задача оптимального управления с фазовыми ограничениями. Состояние пациента описывается двумя переменными: объемом опухоли и состоянием ГЭБ. Фазовые ограничения очерчивают некоторую область в пространстве этих показателей, которую мы называем областью выживаемости. Наша задача заключается в поиске таких стратегий лечения, которые минимизируют время лечения, максимизируют время отдыха пациента и при этом позволяют показателям состояния не выходить за разрешенные пределы. Поскольку задача выживаемости состоит в максимизации времени жизни пациента, то ищутся именно такие стратегии лечения, которые возвращают показатели в исходное положение (и мы видим на графиках периодические траектории). Периодические траектории говорят о том, что смертельно опасная болезнь переведена враз ряд хронических.
Ключевые слова: задача выживаемости, терапия глиом, математическая модель гематоэнцефалического барьера.
Survival task for the mathematical model of glioma therapy with blood-brain barrier
Computer Research and Modeling, 2018, v. 10, no. 1, pp. 113-123Просмотров за год: 14.The paper proposes a mathematical model for the therapy of glioma, taking into account the blood-brain barrier, radiotherapy and antibody therapy. The parameters were estimated from experimental data and the evaluation of the effect of parameter values on the effectiveness of treatment and the prognosis of the disease were obtained. The possible variants of sequential use of radiotherapy and the effect of antibodies have been explored. The combined use of radiotherapy with intravenous administration of $mab$ $Cx43$ leads to a potentiation of the therapeutic effect in glioma.
Radiotherapy must precede chemotherapy, as radio exposure reduces the barrier function of endothelial cells. Endothelial cells of the brain vessels fit tightly to each other. Between their walls are formed so-called tight contacts, whose role in the provision of BBB is that they prevent the penetration into the brain tissue of various undesirable substances from the bloodstream. Dense contacts between endothelial cells block the intercellular passive transport.
The mathematical model consists of a continuous part and a discrete one. Experimental data on the volume of glioma show the following interesting dynamics: after cessation of radio exposure, tumor growth does not resume immediately, but there is some time interval during which glioma does not grow. Glioma cells are divided into two groups. The first group is living cells that divide as fast as possible. The second group is cells affected by radiation. As a measure of the health of the blood-brain barrier system, the ratios of the number of BBB cells at the current moment to the number of cells at rest, that is, on average healthy state, are chosen.
The continuous part of the model includes a description of the division of both types of glioma cells, the recovery of BBB cells, and the dynamics of the drug. Reducing the number of well-functioning BBB cells facilitates the penetration of the drug to brain cells, that is, enhances the action of the drug. At the same time, the rate of division of glioma cells does not increase, since it is limited not by the deficiency of nutrients available to cells, but by the internal mechanisms of the cell. The discrete part of the mathematical model includes the operator of radio interaction, which is applied to the indicator of BBB and to glial cells.
Within the framework of the mathematical model of treatment of a cancer tumor (glioma), the problem of optimal control with phase constraints is solved. The patient’s condition is described by two variables: the volume of the tumor and the condition of the BBB. The phase constraints delineate a certain area in the space of these indicators, which we call the survival area. Our task is to find such treatment strategies that minimize the time of treatment, maximize the patient’s rest time, and at the same time allow state indicators not to exceed the permitted limits. Since the task of survival is to maximize the patient’s lifespan, it is precisely such treatment strategies that return the indicators to their original position (and we see periodic trajectories on the graphs). Periodic trajectories indicate that the deadly disease is translated into a chronic one.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"