Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Полиполярная координация и симметрии
Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 329-341Полиполярная система координат формируется семейством параметризованных по радиусу изофокусных kf-лемнискат. Как и классическая полярная система координат, она характеризует точку плоскости полиполярным радиусом ρ и полиполярным углом φ. Для любой связности семейство изометрических кривых ρ = const – лемнискат и семейство градиентных кривых φ = const являются взаимно ортогональными сопряженными координатными семействами. Рассмотрены особенности полиполярной координации, ее симметрии, а также криволинейные симметрии на многофокусных лемнискатах.
Ключевые слова: кривые, фокусы, многофокусные лемнискаты, овалы Кассини, полярная система координат, координатные семейства, группы симметрий, криволинейные симметрии.
Polypolar coordination and symmetries
Computer Research and Modeling, 2010, v. 2, no. 4, pp. 329-341Просмотров за год: 1.The polypolar system of coordinates is formed by a family of a parametrized on a radius isofocal of kf-lemniscates. As well as the classical polar system of coordinates, it characterizes a point of a plane by a polypolar radius ρ and polypolar angle φ. For anyone connectedness a family isometric of curve ρ = const – lemniscates and family gradient of curves φ = const – are mutually orthogonal conjugate coordinate families. The singularities of polypolar coordination, its symmetry, and also curvilinear symmetries on multifocal lemniscates are considered.
-
Блуждающие симметрии уравнений Лагранжа
Компьютерные исследования и моделирование, 2010, т. 2, № 1, с. 13-17Динамический процесс в равной степени адекватно моделируется семейством уравнений Лагранжа. Группа симметрий блуждает по этому семейству: системы переходят одна в другую. При определенных условиях по нескольким таким группам простыми вычислениями можно получить первый интеграл. Основная цель работы – показать полезность понятия блуждающей симметрии. Рассмотрен пример: плоское движение заряженной частицы в магнитном поле при наличии вязкого трения. При помощи трех блуждающих симметрий вычисляется первый интеграл.
Ключевые слова: уравнения Лагранжа, вариационные симметрии, дивергентные симметрии, конформные симметрии, блуждающие симметрии, первые интегралы.
Wandering symmetries of the Lagrange's equations
Computer Research and Modeling, 2010, v. 2, no. 1, pp. 13-17Просмотров за год: 4.The dynamic process can be in equal degree adequately prototyped by a family of Lagrange's systems. Symmetry group ‘wanders’ on this family: systems are transformed from one into another. In this work we show that under determined condition the first integral can be obtained by a simple calculations on some of such groups. The main purpose of the work is to show usefulness of wandering symmetry concept. The considered example: flat motion of a charged particle in magnetic field in presence of viscous friction. With the help of three wandering symmetry first integral is calculated.
-
Симметрии уравнения Гамильтона–Якоби
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 253-265Вводится понятие преобразования симметрии уравнения Гамильтона–Якоби. Для группы симметрий показывается, как должны быть связаны с функцией Гамильтона коэффициенты инфинитезимального оператора группы. Приводятся примеры вычисления симметрий и примеры вычисления на основе симметрии полных интегралов.
Ключевые слова: уравнение Гамильтона–Якоби, преобразование симметрии, продолжение точечных преобразований на производные, полный интеграл.
Symmetries of the Hamilton–Jacobi equation
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 253-265Просмотров за год: 1. Цитирований: 1 (РИНЦ).The notion of symmetry transformations of the Hamilton–Jacobi equation. For the group of symmetries is shown how to be associated with the Hamiltonian function coefficients of the infinitesimal operator of the group. The examples of calculation of the symmetries and examples calculations based on the full symmetry of the integrals.
-
Интегрирование релятивистских волновых уравнений в космологической модели Бъянки IX
Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 433-443В работе рассматривается интегрирование уравнений Клейна–Гордона и Дирака в космологической модели Бъянки IX. При помощи метода некоммутативного интегрирования дифференциальных уравнений найдены новые точные решения для осесимметричной модели.
Метод некоммутативного интегрирования в данной задаче основан на использовании специального бесконечномерного голоморфного представления группы вращений, которое строится по невырожденной орбите коприсоединенного представления и комплексной поляризации невырожденного ковектора. Матричные элементы данного представления образуют полный и ортогональный набор и позволяют ввести обобщенное преобразование Фурье. Оператор Казимира группы вращений при этом преобразовании переходит в константу, а операторы симметрии, порожденные векторными полями Киллинга, — в линейные дифференциальные операторы первого порядка от одной зависимой переменной. Таким образом, релятивистские волновые уравнения на группе вращений допускают некоммутативную редукцию к обыкновенному дифференциальному уравнению. В отличие от широко известного метода разделения переменных метод некоммутативного интегрирования учитывает неабелеву алгебру операторов симметрии и дает решения, несущие информацию о некоммутативной симметрии задачи. Такие решения могут быть полезны для учета вакуумных квантовых эффектов и расчета конечных функций Грина методом раздвижки точек.
В работе для осесимметричной модели проведено сравнение полученных решений с известными, которые получаются методом разделения переменных. Показано, что некоммутативные решения выражаются через элементарные функции, тогда как известные решения определяются функцией Вигнера. Причем некоммутативно редуцированное уравнение Клейна–Гордона для осесимметричной модели совпадает с уравнением, редуцированным методом разделения переменных. А некоммутативно редуцированное уравнение Дирака эквивалентно редуцированному уравнению, полученному методом разделения переменных.
Ключевые слова: некоммутативное интегрирование, Бъянки IX.
Integration the relativistic wave equations in Bianchi IX cosmology model
Computer Research and Modeling, 2016, v. 8, no. 3, pp. 433-443We consider integration Clein–Gordon and Dirac equations in Bianchi IX cosmology model. Using the noncommutative integration method we found the new exact solutions for Taub universe.
Noncommutative integration method for Bianchi IX model is based on the use of the special infinite-dimensional holomorphic representation of the rotation group, which is based on the nondegenerate orbit adjoint representation, and complex polarization of degenerate covector. The matrix elements of the representation of form a complete and orthogonal set and allow you to use the generalized Fourier transform. Casimir operator for rotation group under this transformation becomes constant. And the symmetry operators generated by the Killing vector fields in the linear differential operators of the first order from one dependent variable. Thus, the relativistic wave equation on the rotation group allow non-commutative reduction to ordinary differential equations. In contrast to the well-known method of separation of variables, noncommutative integration method takes into account the non-Abelian algebra of symmetry operators and provides solutions that carry information about the non-commutative symmetry of the task. Such solutions can be useful for measuring the vacuum quantum effects and the calculation of the Green’s functions by the splitting-point method.
The work for the Taub model compared the solutions obtained with the known, which are obtained by separation of variables. It is shown that the non-commutative solutions are expressed in terms of elementary functions, while the known solutions are defined by the Wigner function. And commutative reduced by the Klein–Gordon equation for Taub model coincides with the equation, reduced by separation of variables. A commutative reduced by the Dirac equation is equivalent to the reduced equation obtained by separation of variables.
Keywords: noncommutative integration, Bianchi IX.Просмотров за год: 5. -
Орбиты в задаче двух тел с симметрийной точки зрения
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 39-45Для задачи двух тел вычисляется 12-параметрическая группа симметрий, преобразования которой переводят очевидное решение — равномерные движения тел по круговым орбитам с общим неподвижным центром — в движения с произвольными начальными данными.
Ключевые слова: задача двух тел, преобразование симметрии, эллиптическая орбита, параболическая орбита, гиперболическая орбита.
Orbits in the two-body problem in terms of symmetries
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 39-45For the two-body problem computed 12-parameter group symmetry transformations which translate the obvious solution — uniform motion of bodies in circular orbits with a common fixed center — a motion with arbitrary initial data.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"