Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'grid infrastructure':
Найдено статей: 8
  1. Гаврилов В.Б., Голутвин И.А., Кодолова О.Л., Кореньков В.В., Левчук Л.Г., Шматов С.В., Тихоненко Е.А., Жильцов В.Е.
    RDMS CMS компьютинг: текущий статус и планы
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 395-398

    Компактный мюонный соленоид (CMS) — высокоточный детектор общего назначения на Большом адронном коллайдере (LHC) в ЦЕРН. Более двадцати институтов из России и стран-участниц ОИЯИ вовлечены в коллаборацию RDMS (Россия и страны-участницы) как составной части коллаборации CMS. Для полноценного участия RDMS CMS в действующей фазе эксперимента, в институтах RDMS была создана необходимая компьютерная грид-инфрастуктура. В статье представлены текущий статус компьютинга коллаборации RDMS CMS и планы его развития в контексте следующего старта LHC в 2015 году.

    Gavrilov V.B., Golutvin I.A., Kodolova O.L., Korenkov V.V., Levchuk L.G., Shmatov S.V., Tikhonenko E.A., Zhiltsov V.E.
    RDMS CMS computing: current status and plans
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 395-398

    The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. More than twenty institutes from Russia and Joint Institute for Nuclear Research (JINR) are involved in Russia and Dubna Member States (RDMS) CMS Collaboration. A proper computing grid-infrastructure has been constructed at the RDMS institutes for the participation in the running phase of the CMS experiment. Current status of RDMS CMS computing and plans of its development to the next LHC start in 2015 are presented.

    Просмотров за год: 2.
  2. Белеан Б., Белеан К., Флоаре К., Вароди К., Бот А., Адам Г.
    Сеточные высокопроизводительные вычисления в получении спутниковых изображний на примере фильтра Перона–Малик
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 399-406

    В данной работе рассматривается подход к эффективной обработке спутниковых изображений, который включает в себя два этапа. Первый этап заключается в распределении быстро взрастающего объема спутниковых данных, полученных через Грид-инфраструктуру. Второй этап включает в себя ускорение решения отдельных задач, относящихся к обработке изображений с помощью внедрения кодов, которые способствуют интенсивному использованию пространственно-временного параллелизма. Примером такого кода является обработка изображений с помощью итерационного фильтра Перона–Малик в рамках специального применения архитектуры аппаратного обеспечения ППВМ (FPGA).

    Belean B., Belean C., Floare C., Varodi C., Bot A., Adam G.
    Grid based high performance computing in satellite imagery. Case study — Perona–Malik filter
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 399-406

    The present paper discusses an approach to the efficient satellite image processing which involves two steps. The first step assumes the distribution of the steadily increasing volume of satellite collected data through a Grid infrastructure. The second step assumes the acceleration of the solution of the individual tasks related to image processing by implementing execution codes which make heavy use of spatial and temporal parallelism. An instance of such execution code is the image processing by means of the iterative Perona–Malik filter within FPGA application specific hardware architecture.

    Просмотров за год: 3.
  3. Смирнова О., Коня Б., Кэмерон Д., Нильсен Й.К., Филипчич А.
    ARC-CE: новости и перспективы
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 407-414

    Вычислительный элемент ARC приобретает всё большую популярность в инфраструктурах WLCG и EGI, и используется не только в контексте систем Грид, но и как интерфейс к суперкомпьютерам и облачным ресурсам. Развитие и поддержка ARC опирается на вклады членов пользовательского сообщества, что помогает идти в ногу со всеми изменениями в сфере распределённых вычислений. Перспективы развития ARC тесно связаны с требованиями обработки данных БАК, в любых их проявлениях. ARC также используется и для нужд небольших научных сообществ, благодаря государственным вычислительным инфраструктурам в различных странах. Таким образом, ARC представляет собой эффективное решение для создания распределённых вычислительных инфраструктур, использующих разнообразные ресурсы.

    Smirnova O., Kónya B., Cameron D., Nilsen J.K., Filipčič A.
    ARC-CE: updates and plans
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 407-414

    ARC Compute Element is becoming more popular in WLCG and EGI infrastructures, being used not only in the Grid context, but also as an interface to HPC and Cloud resources. It strongly relies on community contributions, which helps keeping up with the changes in the distributed computing landscape. Future ARC plans are closely linked to the needs of the LHC computing, whichever shape it may take. There are also numerous examples of ARC usage for smaller research communities through national computing infrastructure projects in different countries. As such, ARC is a viable solution for building uniform distributed computing infrastructures using a variety of resources.

  4. Астахов Н.С., Багинян А.С., Белов С.Д., Долбилов А.Г., Голунов А.О., Горбунов И.Н., Громова Н.И., Кашунин И.А., Кореньков В.В., Мицын В.В., Шматов С.В., Стриж Т.А., Тихоненко Е.А., Трофимов В.В., Войтишин Н.Н., Жильцов В.Е.
    Статус и перспективы вычислительного центра ОИЯИ 1-го уровня (TIER-1) для эксперимента CMS на большом адронном коллайдере
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 455-462

    Компактный мюонный соленоид (CMS) — высокоточная детекторная установка на Большом адронном коллайдере (LHC) в ЦЕРН. Для осуществления обработки и анализа данных в CMS была разработана система распределенного анализа данных, предполагающая обязательное использование современных грид-технологий. Модель компьютинга для CMS — иерархическая (в смысле создания вычислительных центров разного уровня). Объединенный институт ядерных исследований (ОИЯИ) принимает активное участие в эксперименте CMS. В ОИЯИ создается центр 1-го уровня (Tier1) для CMS c целью обеспечения необходимой компьютерной инфраструктурой ОИЯИ и российских институтов, участвующих в эксперименте CMS. В работе описаны основные задачи и сервисы центра Tier1 для CMS в ОИЯИ и представлены статус и перспективы его развития.

    Astakhov N.S., Baginyan A.S., Belov S.D., Dolbilov A.G., Golunov A.O., Gorbunov I.N., Gromova N.I., Kashunin I.A., Korenkov V.V., Mitsyn V.V., Shmatov S.V., Strizh T.A., Tikhonenko E.A., Trofimov V.V., Voitishin N.N., Zhiltsov V.E.
    JINR TIER-1-level computing system for the CMS experiment at LHC: status and perspectives
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 455-462

    The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. A distributed data analysis system for processing and further analysis of CMS experimental data has been developed and this model foresees the obligatory usage of modern grid-technologies. The CMS Computing Model makes use of the hierarchy of computing centers (Tiers). The Joint Institute for Nuclear Research (JINR) takes an active part in the CMS experiment. In order to provide a proper computing infrastructure for the CMS experiment at JINR and for Russian institutes collaborating in CMS, Tier-1 center for the CMS experiment is constructing at JINR. The main tasks and services of the CMS Tier-1 at JINR are described. The status and perspectives of the Tier1 center for the CMS experiment at JINR are presented.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  5. Холодков К.И., Алёшин И.М.
    Точное вычисление апостериорной функции распределения вероятно- сти при помощи вычислительных систем
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 539-542

    Представленная работа описывает опыт создания и развёртывания веб-приложения и гридинфраструктуры для решения задач геофизики, требующих большого количества вычислительных ресурсов. В работе представлен обзор технологии и механизма платформы интеграции геофизических приложений с распределёнными вычислительными системами. Разработанная платформа предоставляет собой промежуточное программное обеспечение, предоставляющая удобный доступ к развёрнутым на ее основе геофизическим приложениям. Доступ к приложению осуществляется через веб-браузер. Интеграция новых приложений облегчается за счёт предоставляемого стандартного универсального интерфейса взаимодействия платформы и новым приложением.

    Для организации распределённой вычислительной системы применено ПО Gridway, экземпляр которого взаимодействует с виртуализированными вычислительными кластерами. Виртуализация вычислительных кластеров предоставляет новые возможности при утилизации вычислительных ресурсов по сравнению с традиционными схемами организации кластерного ПО.

    В качестве пилотной задачи использована обратная задача определение параметров анизотропии коры и верхней мантии по данным телесейсмических наблюдений. Для решения использован вероятностный подход к решению обратных задач, основанный на формализме апостериорной функции распределения (АПФР). При этом вычислительная задача сводится к табулированию многомерной функции. Результат вычислений представлен в удобном для анализа высокоуровневом виде, доступ и управление осуществляется при помощи СУБД. Приложение предоставляет инструменты анализу АПФР: расчет первых моментов, двумерные маргинальные распределения, двумерные сечения АПФР в точках ее максимума. При тестировании веб-приложения были выполнены вычислены как синтетических, так и для реальных данных.

    Kholodkov K.I., Aleshin I.M.
    Exact calculation of a posteriori probability distribution with distributed computing systems
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 539-542

    We'd like to present a specific grid infrastructure and web application development and deployment. The purpose of infrastructure and web application is to solve particular geophysical problems that require heavy computational resources. Here we cover technology overview and connector framework internals. The connector framework links problem-specific routines with middleware in a manner that developer of application doesn't have to be aware of any particular grid software. That is, the web application built with this framework acts as an interface between the user 's web browser and Grid's (often very) own middleware.

    Our distributed computing system is built around Gridway metascheduler. The metascheduler is connected to TORQUE resource managers of virtual compute nodes that are being run atop of compute cluster utilizing the virtualization technology. Such approach offers several notable features that are unavailable to bare-metal compute clusters.

    The first application we've integrated with our framework is seismic anisotropic parameters determination by inversion of SKS and converted phases. We've used probabilistic approach to inverse problem solution based on a posteriory probability distribution function (APDF) formalism. To get the exact solution of the problem we have to compute the values of multidimensional function. Within our implementation we used brute-force APDF calculation on rectangular grid across parameter space.

    The result of computation is stored in relational DBMS and then represented in familiar human-readable form. Application provides several instruments to allow analysis of function's shape by computational results: maximum value distribution, 2D cross-sections of APDF, 2D marginals and a few other tools. During the tests we've run the application against both synthetic and observed data.

    Просмотров за год: 3.
  6. Мароши А.К., Ловаш Р.
    Определение добровольных вычислений: формальный подход
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 565-571

    Добровольные вычисления напоминают частные desktop гриды, тогда как desktop гриды не полностью эквивалентны добровольным вычислениям. Известны несколько попыток отличить и категоризировать их, используя как неофициальные, так и формальные методы. Однако, наиболее формальные подходы моделируют специфическое промежуточное ПО (middleware) и не сосредотачиваются на общем понятии добровольного или desktop грид. Эта работа и есть попытка формализовать их характеристики и отношения. Для этой цели применяется формальное моделирование, которое пытается охватить семантику их функциональных возможностей — в противоположность сравнениям, основанным на свойствах, особенностях, и т. п. Мы применяем этот метод моделирования с целью формализовать добровольную вычислительную систему Открытой Инфраструктуры Беркли для сетевых вычислений (BOINC) [Anderson D. P., 2004].

    Marosi A.C., Lovas R.
    Defining volunteer computing: a formal approach
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 565-571

    Volunteer computing resembles private desktop grids whereas desktop grids are not fully equivalent to volunteer computing. There are several attempts to distinguish and categorize them using informal and formal methods. However, most formal approaches model a particular middleware and do not focus on the general notion of volunteer or desktop grid computing. This work makes an attempt to formalize their characteristics and relationship. To this end formal modeling is applied that tries to grasp the semantic of their functionalities — as opposed to comparisons based on properties, features, etc. We apply this modeling method to formalize the Berkeley Open Infrastructure for Network Computing (BOINC) [Anderson D. P., 2004] volunteer computing system.

  7. Бережная А.Я., Велихов В.Е., Лазин Ю.А., Лялин И.Н., Рябинкин Е.А., Ткаченко И.А.
    Ресурсный центр обработки данных уровня Tier-1 в национальном исследовательском центре «Курчатовский институт» для экспериментов ALICE, ATLAS и LHCb на Большом адронном коллайдере (БАК)
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 621-630

    Представлен обзор распределенной вычислительной инфраструктуры ресурсных центров коллаборации WLCG для экспериментов БАК. Особое внимание уделено описанию решаемых задач и основным сервисам нового ресурсного центра уровня Tier-1, созданного в Национальном исследовательском центре «Курчатовский институт» для обслуживания ALICE, ATLAS и LHCb экспериментов (г. Москва).

    Berezhnaya A.Ya., Velikhov V.E., Lazin Y.A., Lyalin I.N., Ryabinkin E.A., Tkachenko I.A.
    The Tier-1 resource center at the National Research Centre “Kurchatov Institute” for the experiments, ALICE, ATLAS and LHCb at the Large Hadron Collider (LHC)
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 621-630

    The review of the distributed computing infrastructure of the Tier-1 sites for the Alice, ATLAS, LHCb experiments at the LHC is given. The special emphasis is placed on the main tasks and services of the Tier-1 site, which operates in the Kurchatov Institute in Moscow.

    Просмотров за год: 2.
  8. Бондяков А.С.
    Основные направления развития информационных технологий Национальной академии наук Азербайджана
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 657-660

    Грид-инфраструктура — компьютерная инфраструктура нового типа, обеспечивающая глобальную интеграцию информационных и вычислительных ресурсов. Грид-сегмент в Азербайджане был создан в 2008 году в Институте физики НАН при активной поддержке международных организаций ОИЯИ и CERN. Грид приобретает все большую популярность в научно-исследовательских и образовательных центрах Азербайджана. Среди основных направлений использования грид на данный момент можно выделить научные исследования в физике высоких энергий, физике твердого тела, энергетике, астрофизике, биологии, науках о Земле, а также в медицине.

    Bondyakov A.S.
    Basic directions of information technology in National Academy of Sciences of Azerbaijan
    Computer Research and Modeling, 2015, v. 7, no. 3, pp. 657-660

    Grid is a new type of computing infrastructure, is intensively developed in today world of information technologies. Grid provides global integration of information and computing resources. The essence Conception of GRID in Azerbaijan is to create a set of standardized services to provide a reliable, compatible, inexpensive and secure access to geographically distributed high-tech information and computing resources a separate computer, cluster and supercomputing centers, information storage, networks, scientific tools etc.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.