Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Статус и перспективы вычислительного центра ОИЯИ 1-го уровня (TIER-1) для эксперимента CMS на большом адронном коллайдере
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 455-462Компактный мюонный соленоид (CMS) — высокоточная детекторная установка на Большом адронном коллайдере (LHC) в ЦЕРН. Для осуществления обработки и анализа данных в CMS была разработана система распределенного анализа данных, предполагающая обязательное использование современных грид-технологий. Модель компьютинга для CMS — иерархическая (в смысле создания вычислительных центров разного уровня). Объединенный институт ядерных исследований (ОИЯИ) принимает активное участие в эксперименте CMS. В ОИЯИ создается центр 1-го уровня (Tier1) для CMS c целью обеспечения необходимой компьютерной инфраструктурой ОИЯИ и российских институтов, участвующих в эксперименте CMS. В работе описаны основные задачи и сервисы центра Tier1 для CMS в ОИЯИ и представлены статус и перспективы его развития.
JINR TIER-1-level computing system for the CMS experiment at LHC: status and perspectives
Computer Research and Modeling, 2015, v. 7, no. 3, pp. 455-462Просмотров за год: 3. Цитирований: 2 (РИНЦ).The Compact Muon Solenoid (CMS) is a high-performance general-purpose detector at the Large Hadron Collider (LHC) at CERN. A distributed data analysis system for processing and further analysis of CMS experimental data has been developed and this model foresees the obligatory usage of modern grid-technologies. The CMS Computing Model makes use of the hierarchy of computing centers (Tiers). The Joint Institute for Nuclear Research (JINR) takes an active part in the CMS experiment. In order to provide a proper computing infrastructure for the CMS experiment at JINR and for Russian institutes collaborating in CMS, Tier-1 center for the CMS experiment is constructing at JINR. The main tasks and services of the CMS Tier-1 at JINR are described. The status and perspectives of the Tier1 center for the CMS experiment at JINR are presented.
-
Модель интерференции длинных волн экономического развития
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 649-663В статье обосновывается необходимость разработки и анализа математических моделей, учитывающих взаимное влияние длинных (кондратьевских) волн экономического развития. Анализ имеющихся публикаций показывает, что на модельном уровне прямые и обратные связи между пересекающимися длинными волнами до сих пор изучены недостаточно. Как свидетельствует практика, производства текущей длинной волны могут получать дополнительный импульс к росту со стороны технологий следующей длинной волны. Технологии очередной промышленной революции часто служат улучшающими инновациями для производств, рожденных предшествующей промышленной революцией. Как следствие, новая длинная волна увеличивает амплитуду колебаний траектории предшествующей длинной волны. Такого рода результаты взаимодействия длинных волн в экономике похожи на эффекты интерференции физических волн. Взаимовлияние спадов и подъемов экономик разных стран дает еще больше оснований для сопоставления последствий этого взаимовлияния с интерференцией физических волн. В статье представлена модель развития технологической базы производства, учитывающая возможности комбинирования старых и новых технологий. Модель состоит из нескольких подмоделей. Использование отличающегося математического описания для отдельных этапов обновления технологической базы производства позволяет учесть значительные различия между последовательными фазами жизненного цикла технологий широкого применения, рассматриваемых в современной литературе в качестве технологической основы промышленных революций. Одной из таких фаз является период формирования соответствующей инфраструктуры, необходимой для интенсивной диффузии новой технологии широкого применения, для быстрого развития использующих эту технологию отраслей. По модели выполнены иллюстративные расчеты при значениях экзогенных параметров, отвечающих логике смены длинных волн. При всей условности проведенных иллюстративных расчетов конфигурация кривой, представляющей изменение фондоотдачи в моделируемом периоде, близка к конфигурации реальной траектории фондоотдачи частных основных производственных фондов экономики США в период 1982–2019 гг. Указаны факторы, которые остались за рамками представленной модели, но которые целесообразно учитывать при описании интерференции длинных волн экономического развития.
Ключевые слова: длинные волны экономического развития, интерференция волн, технологии широкого применения, диффузия инноваций, улучшающие инновации, инфраструктура.
The model of interference of long waves of economic development
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 649-663The article substantiates the need to develop and analyze mathematical models that take into account the mutual influence of long (Kondratiev) waves of economic development. The analysis of the available publications shows that at the model level, the direct and inverse relationships between intersecting long waves are still insufficiently studied. As practice shows, the production of the current long wave can receive an additional impetus for growth from the technologies of the next long wave. The technologies of the next industrial revolution often serve as improving innovations for the industries born of the previous industrial revolution. As a result, the new long wave increases the amplitude of the oscillations of the trajectory of the previous long wave. Such results of the interaction of long waves in the economy are similar to the effects of interference of physical waves. The mutual influence of the recessions and booms of the economies of different countries gives even more grounds for comparing the consequences of this mutual influence with the interference of physical waves. The article presents a model for the development of the technological base of production, taking into account the possibilities of combining old and new technologies. The model consists of several sub-models. The use of a different mathematical description for the individual stages of updating the technological base of production allows us to take into account the significant differences between the successive phases of the life cycle of general purpose technologies, considered in modern literature as the technological basis of industrial revolutions. One of these phases is the period of formation of the appropriate infrastructure necessary for the intensive diffusion of new general purpose technology, for the rapid development of industries using this technology. The model is used for illustrative calculations with the values of exogenous parameters corresponding to the logic of changing long waves. Despite all the conditionality of the illustrative calculations, the configuration of the curve representing the change in the return on capital in the simulated period is close to the configuration of the real trajectory of the return on private fixed assets of the US economy in the period 1982-2019. The factors that remained outside the scope of the presented model, but which are advisable to take into account when describing the interference of long waves of economic development, are indicated.
-
Моделирование транспортных потоков на основе квазигазодинамического подхода и теории клеточных автоматов с использованием суперкомпьютеров
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 175-194Целью исследования являются моделирование динамики автотранспортных потоков на транспортных сетях мегаполисов и систематизация современного состояния дел в этой области. Во введении указывается, что на первый план выходит развитие интеллектуальных транспортных систем, которые становятся неотъемлемой частью современных транспортных технологий. Основным ядром таких систем являются адекватные математические модели, максимально приближенные к реальности. Отмечается, что в связи с большим объемом вычислений необходимо использование суперкомпьютеров, следовательно, создание специальных пар аллельных алгоритмов. В начале статьи приводится современная классификация моделей, обсуждаются отличительные особенности каждого класса со ссылками на соответствующие примеры. Далее основное внимание уделяется созданным авторами статьи разработкам в области как макроскопического, так и микроскопического моделирования и определению места этих разработок в приведенной выше классификации. Макроскопическая модель основана на приближении сплошной среды и использует идеологию квазигазодинамических систем уравнений. Указаны ее достоинства по сравнению с существующими моделями этого класса. Система уравнений модели представлена как в одномерном варианте, но с возможностью исследования многополосного движения, так и в двумерном варианте, с введением понятия боковой скорости, то есть скорости перестроения из полосы в полосу. Второй вариант позволяет проводить вычисления в расчетной области, соответствующей реальной геометрии дороги. Представлены тестовые расчеты движения по дороге с локальным расширением и по дороге с системой светофоров с различными светофорными режимами. Расчеты позволили в первом случае сделать интересные выводы о влиянии расширения на пропускную способность дороги в целом, а во втором случае — выбрать оптимальный режим для получения эффекта «зеленой волны». Микроскопическая модель основана на теории клеточных автоматов и однополосной модели Нагеля – Шрекенберга и обобщена авторами на случай многополосного движения. В модели реализованы различные поведенческие стратегии водителей. В качестве теста моделируется движение на реальном участке транспортной сети в центре г. Москвы. Причем для грамотного прохождения транспортных узлов сети в соответствии с правилами движения реализованы специальные алгоритмы, адаптированные для параллельных вычислений. Тестовые расчеты выполнены на суперкомпьютере К-100 ЦКП ИПМ им. М. В. Келдыша РАН.
Ключевые слова: интеллектуальные транспортные системы, теория транспортныхп отоков, макроскопические и микроскопические модели, квазигазодинамическая система уравнений, клеточные автоматы, многополосное движение, параллельные вычисления.
Simulation of traffic flows based on the quasi-gasdynamic approach and the cellular automata theory using supercomputers
Computer Research and Modeling, 2024, v. 16, no. 1, pp. 175-194The purpose of the study is to simulate the dynamics of traffic flows on city road networks as well as to systematize the current state of affairs in this area. The introduction states that the development of intelligent transportation systems as an integral part of modern transportation technologies is coming to the fore. The core of these systems contain adequate mathematical models that allow to simulate traffic as close to reality as possible. The necessity of using supercomputers due to the large amount of calculations is also noted, therefore, the creation of special parallel algorithms is needed. The beginning of the article is devoted to the up-to-date classification of traffic flow models and characterization of each class, including their distinctive features and relevant examples with links. Further, the main focus of the article is shifted towards the development of macroscopic and microscopic models, created by the authors, and determination of the place of these models in the aforementioned classification. The macroscopic model is based on the continuum approach and uses the ideology of quasi-gasdynamic systems of equations. Its advantages are indicated in comparison with existing models of this class. The model is presented both in one-dimensional and two-dimensional versions. The both versions feature the ability to study multi-lane traffic. In the two-dimensional version it is made possible by introduction of the concept of “lateral” velocity, i. e., the speed of changing lanes. The latter version allows for carrying out calculations in the computational domain which corresponds to the actual geometry of the road. The section also presents the test results of modeling vehicle dynamics on a road fragment with the local widening and on a road fragment with traffic lights, including several variants of traffic light regimes. In the first case, the calculations allow to draw interesting conclusions about the impact of a road widening on a road capacity as a whole, and in the second case — to select the optimal regime configuration to obtain the “green wave” effect. The microscopic model is based on the cellular automata theory and the single-lane Nagel – Schreckenberg model and is generalized for the multi-lane case by the authors of the article. The model implements various behavioral strategies of drivers. Test computations for the real transport network section in Moscow city center are presented. To achieve an adequate representation of vehicles moving through the network according to road traffic regulations the authors implemented special algorithms adapted for parallel computing. Test calculations were performed on the K-100 supercomputer installed in the Centre of Collective Usage of KIAM RAS.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"