Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'инфраструктура':
Найдено статей: 25
  1. Grid’2014
    Компьютерные исследования и моделирование, 2015, т. 7, № 3 с.
    Просмотров за год: 2.
  2. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 279-283
    Просмотров за год: 18.
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  4. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  5. Белеан Б., Белеан К., Флоаре К., Вароди К., Бот А., Адам Г.
    Сеточные высокопроизводительные вычисления в получении спутниковых изображний на примере фильтра Перона–Малик
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 399-406

    В данной работе рассматривается подход к эффективной обработке спутниковых изображений, который включает в себя два этапа. Первый этап заключается в распределении быстро взрастающего объема спутниковых данных, полученных через Грид-инфраструктуру. Второй этап включает в себя ускорение решения отдельных задач, относящихся к обработке изображений с помощью внедрения кодов, которые способствуют интенсивному использованию пространственно-временного параллелизма. Примером такого кода является обработка изображений с помощью итерационного фильтра Перона–Малик в рамках специального применения архитектуры аппаратного обеспечения ППВМ (FPGA).

    Просмотров за год: 3.
  6. Смирнова О., Коня Б., Кэмерон Д., Нильсен Й.К., Филипчич А.
    ARC-CE: новости и перспективы
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 407-414

    Вычислительный элемент ARC приобретает всё большую популярность в инфраструктурах WLCG и EGI, и используется не только в контексте систем Грид, но и как интерфейс к суперкомпьютерам и облачным ресурсам. Развитие и поддержка ARC опирается на вклады членов пользовательского сообщества, что помогает идти в ногу со всеми изменениями в сфере распределённых вычислений. Перспективы развития ARC тесно связаны с требованиями обработки данных БАК, в любых их проявлениях. ARC также используется и для нужд небольших научных сообществ, благодаря государственным вычислительным инфраструктурам в различных странах. Таким образом, ARC представляет собой эффективное решение для создания распределённых вычислительных инфраструктур, использующих разнообразные ресурсы.

  7. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Просмотров за год: 3.
  8. Макарова И.В., Шубенкова К.А., Маврин В.Г., Бойко А.Д.
    Особенности маршрутизации общественного транспорта в городах разных видов
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 381-394

    В статье представлена классификация городов с учетом планировочных особенностей и возможных транспортных решений для городов различных типов. Также обсуждаются примеры различных стратегий развития городского общественного транспорта в России и странах Европейского союза с сопоставлением их эффективности. В статье приводятся примеры влияния городского планирования на мобильность граждан. Для реализации сложных стратегических решений необходимо использовать микро- и макромодели, которые позволяют сравнивать ситуации «как есть» и «как будет» для прогнозирования последствий. Кроме того, авторы предлагают методику совершенствования маршрутной сети общественного транспорта и улично-дорожной сети, которая включает определение потребностей населения в трудовых и учебных корреспонденциях, идентификацию узких мест улично-дорожной сети, разработку имитационных моделей и выработку рекомендаций по результатам эксперимента на моделях, а также расчет эффективности, включающий расчет положительного социального эффекта, экономическую эффективность, повышение экологичности и устойчивости городской транспортной системы. Для обоснования предложенной методологии были построены макро- и микромодели исследуемого города с учетом пространственной планировки и других особенностей города. Таким образом, на примере города Набережные Челны показано, что использование нашей методологии может помочь улучшить ситуацию на дорогах за счет оптимизации сети автобусных маршрутов и дорожной инфраструктуры. Результаты показали, что при реализации предложенных решений можно уменьшить транспортную нагрузку на узкие места, количество перекрывающихся автобусных маршрутов, а также плотность движения.

  9. Подлипнова И.В., Дорн Ю.В., Склонин И.А.
    Облачная интерпретация энтропийной модели расчета матрицы корреспонденций
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 89-103

    С ростом населения городов сильнее ощущается необходимость планирования развития транспортной инфраструктуры. Для этой цели создаются пакеты транспортного моделирования, которые обычно содержат набор задач выпуклой оптимизации, итеративное решение которых приводит к искомому равновесному распределению потоков по путям. Одно из направлений развития транспортного моделирования — это построение более точных обобщенных моделей, которые учитывают различные типы пассажиров, их цели поездок, а также специфику личных и общественных средств передвижения, которыми могут воспользоваться агенты. Другим не менее важным направлением является улучшение эффективности производимых вычислений, так как в связи с большой размерностью современных транспортных сетей поиск численного решения задачи равновесного распределения потоков по путям является довольно затратным. Итеративность всего процесса решения лишь усугубляет это. Одним из подходов, ведущим к уменьшению числа производимых вычислений, и является построение согласованных моделей, которые позволяют объединить блоки 4-стадийной модели в единую задачу оптимизации. Это позволяет исключить итеративную прогонку блоков, перейдя от решения отдельной задачи оптимизации на каждом этапе к некоторой общей задаче. В ранних работах было доказано, что такие подходы дают эквивалентные решения. Тем не менее стоит рассмотреть обоснованность и интерпретируемость этих методов. Целью данной статьи является обоснование единой задачи, объединяющей в себе как расчет матрицы корреспонденций, так и модальный выбор, для обобщенного случая, когда в транспортной сети присутствуют различные слои спроса, типы агентов и классы транспортных средств. В статье приводятся возможные интерпретации для калибровочных параметров, применяемых в задаче, а также для двойственных множителей, ассоциированных с балансовыми ограничениями. Авторы статьи также показывают возможность объединения рассматриваемой задачи с блоком определения загрузки сети в единую задачу оптимизации.

  10. Астахов Н.С., Багинян А.С., Белов С.Д., Долбилов А.Г., Голунов А.О., Горбунов И.Н., Громова Н.И., Кашунин И.А., Кореньков В.В., Мицын В.В., Шматов С.В., Стриж Т.А., Тихоненко Е.А., Трофимов В.В., Войтишин Н.Н., Жильцов В.Е.
    Статус и перспективы вычислительного центра ОИЯИ 1-го уровня (TIER-1) для эксперимента CMS на большом адронном коллайдере
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 455-462

    Компактный мюонный соленоид (CMS) — высокоточная детекторная установка на Большом адронном коллайдере (LHC) в ЦЕРН. Для осуществления обработки и анализа данных в CMS была разработана система распределенного анализа данных, предполагающая обязательное использование современных грид-технологий. Модель компьютинга для CMS — иерархическая (в смысле создания вычислительных центров разного уровня). Объединенный институт ядерных исследований (ОИЯИ) принимает активное участие в эксперименте CMS. В ОИЯИ создается центр 1-го уровня (Tier1) для CMS c целью обеспечения необходимой компьютерной инфраструктурой ОИЯИ и российских институтов, участвующих в эксперименте CMS. В работе описаны основные задачи и сервисы центра Tier1 для CMS в ОИЯИ и представлены статус и перспективы его развития.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
Страницы: следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.