Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Редуцированная математическая модель свертывания крови с учетом переключения активности тромбина как основа оценки влияния гемодинамических эффектов и ее реализация в пакете FlowVision
Компьютерные исследования и моделирование, 2023, т. 15, № 4, с. 1039-1067Рассматривается возможность численного 3D-моделирования образования тромбов.
Известные детальные математические модели формирования тромбов включают в себя большое число уравнений. Для совмещения таких подробных математических моделей с гидродинамическими кодами для моделирования роста тромбов в кровотоке необходимы значительные вычислительные ресурсы. Разумной альтернативой представляется использование редуцированных математических моделей. В настоящей работе описаны две математические модели, основанные на редуцированной математической модели производства тромбина.
Первая модель описывает рост тромбоцитарного тромба в крупном сосуде (артерии). Течения в артериях существенно нестационарные, для артерий характерны пульсовые волны. Скорость течения крови в них велика по сравнению с венозным деревом. Редуцированная модель производства тромбина и тромбообразования в артериях относительно проста. Показано, что процессы производства тромбина хорошо описываются приближением нулевого порядка.
Для вен характерны более низкие скорости, меньшие градиенты и, как следствие, меньшие значения напряжений сдвига. Для моделирования производства тромбина в венах необходимо решать более сложную систему уравнений, учитывающую все нелинейные слагаемые в правых частях.
Моделирование проводится в индустриальном программном комплексе (ПК) FlowVision.
Проведенные тестовые расчеты показали адекватность редуцированных моделей производства тромбина и тромбообразования. В частности, расчеты демонстрируют формирование зоны возвратного течения за тромбом. За счет формирования такой зоны происходит медленный рост тромба в направлении вниз по потоку. В наветренной части тромба концентрация активных тромбоцитов мала, соответственно, рост тромба в направлении вверх по потоку незначителен.
При учете изменения течения в процессе сердечного цикла рост тромба происходит гораздо медленнее, чем при задании осредненных (по сердечному циклу) условий. Тромбин и активированные тромбоциты, наработанные во время диастолы, быстро уносятся потоком крови во время систолы. Заметный эффект оказывает учет неньютоновской реологии крови.
Ключевые слова: гемодинамика, тромб, тромбин, тромбоцит, фибрин, артерия, вена, численное моделирование, вычислительная гидродинамика (ВГД), уравнения Навье – Стокса, уравнения «реакция – диффузия – конвекция», неньютоновская жидкость, метод конечных объемов.
Reduced mathematical model of blood coagulation taking into account thrombin activity switching as a basis for estimation of hemodynamic effects and its implementation in FlowVision package
Computer Research and Modeling, 2023, v. 15, no. 4, pp. 1039-1067The possibility of numerical 3D simulation of thrombi formation is considered.
The developed up to now detailed mathematical models describing formation of thrombi and clots include a great number of equations. Being implemented in a CFD code, the detailed mathematical models require essential computer resources for simulation of the thrombi growth in a blood flow. A reasonable alternative way is using reduced mathematical models. Two models based on the reduced mathematical model for the thrombin generation are described in the given paper.
The first model describes growth of a thrombus in a great vessel (artery). The artery flows are essentially unsteady. They are characterized by pulse waves. The blood velocity here is high compared to that in the vein tree. The reduced model for the thrombin generation and the thrombus growth in an artery is relatively simple. The processes accompanying the thrombin generation in arteries are well described by the zero-order approximation.
A vein flow is characterized lower velocity value, lower gradients, and lower shear stresses. In order to simulate the thrombin generation in veins, a more complex system of equations has to be solved. The model must allow for all the non-linear terms in the right-hand sides of the equations.
The simulation is carried out in the industrial software FlowVision.
The performed numerical investigations have shown the suitability of the reduced models for simulation of thrombin generation and thrombus growth. The calculations demonstrate formation of the recirculation zone behind a thrombus. The concentration of thrombin and the mass fraction of activated platelets are maximum here. Formation of such a zone causes slow growth of the thrombus downstream. At the upwind part of the thrombus, the concentration of activated platelets is low, and the upstream thrombus growth is negligible.
When the blood flow variation during a hart cycle is taken into account, the thrombus growth proceeds substantially slower compared to the results obtained under the assumption of constant (averaged over a hard cycle) conditions. Thrombin and activated platelets produced during diastole are quickly carried away by the blood flow during systole. Account of non-Newtonian rheology of blood noticeably affects the results.
-
Аддитивная регуляризация тематических моделей с быстрой векторизацией текста
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1515-1528Задача вероятностного тематического моделирования заключается в том, чтобы по заданной коллекции текстовых документов найти две матрицы: матрицу условных вероятностей тем в документах и матрицу условных вероятностей слов в темах. Каждый документ представляется в виде мультимножества слов, то есть предполагается, что для выявления тематики документа не важен порядок слов в нем, а важна только их частота. При таком предположении задача сводится к вычислению низкорангового неотрицательного матричного разложения, наилучшего по критерию максимума правдоподобия. Данная задача имеет в общем случае бесконечное множество решений, то есть является некорректно поставленной. Для регуляризации ее решения к логарифму правдоподобия добавляется взвешенная сумма оптимизационных критериев, с помощью которых формализуются дополнительные требования к модели. При моделировании больших текстовых коллекций хранение первой матрицы представляется нецелесообразным, поскольку ее размер пропорционален числу документов в коллекции. В то же время тематические векторные представления документов необходимы для решения многих задач текстовой аналитики — информационного поиска, кластеризации, классификации, суммаризации текстов. На практике тематический вектор вычисляется для каждого документа по необходимости, что может потребовать десятков итераций по всем словам документа. В данной работе предлагается способ быстрого вычисления тематического вектора для произвольного текста, требующий лишь одной итерации, то есть однократного прохода по всем словам документа. Для этого в модель вводится дополнительное ограничение в виде уравнения, позволяющего вычислять первую матрицу через вторую за линейное время. Хотя формально данное ограничение не является оптимизационным критерием, фактически оно выполняет роль регуляризатора и может применяться в сочетании с другими критериями в рамках теории аддитивной регуляризации тематических моделей ARTM. Эксперименты на трех свободно доступных текстовых коллекциях показали, что предложенный метод улучшает качество модели по пяти оценкам качества, характеризующим разреженность, различность, информативность и когерентность тем. Для проведения экспериментов использовались библиотеки с открытымк одомB igARTM и TopicNet.
Ключевые слова: автоматическая обработка текстов, обучение без учителя, тематическое моделирование, аддитивная регуляризация тематических моделей, EM-алгоритм, PLSA, LDA, ARTM, BigARTM, TopicNet.
Additive regularizarion of topic models with fast text vectorizartion
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1515-1528The probabilistic topic model of a text document collection finds two matrices: a matrix of conditional probabilities of topics in documents and a matrix of conditional probabilities of words in topics. Each document is represented by a multiset of words also called the “bag of words”, thus assuming that the order of words is not important for revealing the latent topics of the document. Under this assumption, the problem is reduced to a low-rank non-negative matrix factorization governed by likelihood maximization. In general, this problem is ill-posed having an infinite set of solutions. In order to regularize the solution, a weighted sum of optimization criteria is added to the log-likelihood. When modeling large text collections, storing the first matrix seems to be impractical, since its size is proportional to the number of documents in the collection. At the same time, the topical vector representation (embedding) of documents is necessary for solving many text analysis tasks, such as information retrieval, clustering, classification, and summarization of texts. In practice, the topical embedding is calculated for a document “on-the-fly”, which may require dozens of iterations over all the words of the document. In this paper, we propose a way to calculate a topical embedding quickly, by one pass over document words. For this, an additional constraint is introduced into the model in the form of an equation, which calculates the first matrix from the second one in linear time. Although formally this constraint is not an optimization criterion, in fact it plays the role of a regularizer and can be used in combination with other regularizers within the additive regularization framework ARTM. Experiments on three text collections have shown that the proposed method improves the model in terms of sparseness, difference, logLift and coherence measures of topic quality. The open source libraries BigARTM and TopicNet were used for the experiments.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"