Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'discrete element method':
Найдено статей: 8
  1. Веричев Н.Н., Веричев С.Н., Ерофеев В.И.
    Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.

    Verichev N.N., Verichev S.N., Erofeev V.I.
    Stationary states and bifurcations in a one-dimensional active medium of oscillators
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 491-512

    This article presents the results of an analytical and computer study of the collective dynamic properties of a chain of self-oscillating systems (conditionally — oscillators). It is assumed that the couplings of individual elements of the chain are non-reciprocal, unidirectional. More precisely, it is assumed that each element of the chain is under the influence of the previous one, while the reverse reaction is absent (physically insignificant). This is the main feature of the chain. This system can be interpreted as an active discrete medium with unidirectional transfer, in particular, the transfer of a matter. Such chains can represent mathematical models of real systems having a lattice structure that occur in various fields of natural science and technology: physics, chemistry, biology, radio engineering, economics, etc. They can also represent models of technological and computational processes. Nonlinear self-oscillating systems (conditionally, oscillators) with a wide “spectrum” of potentially possible individual self-oscillations, from periodic to chaotic, were chosen as the “elements” of the lattice. This allows one to explore various dynamic modes of the chain from regular to chaotic, changing the parameters of the elements and not changing the nature of the elements themselves. The joint application of qualitative methods of the theory of dynamical systems and qualitative-numerical methods allows one to obtain a clear picture of all possible dynamic regimes of the chain. The conditions for the existence and stability of spatially-homogeneous dynamic regimes (deterministic and chaotic) of the chain are studied. The analytical results are illustrated by a numerical experiment. The dynamical regimes of the chain are studied under perturbations of parameters at its boundary. The possibility of controlling the dynamic regimes of the chain by turning on the necessary perturbation at the boundary is shown. Various cases of the dynamics of chains comprised of inhomogeneous (different in their parameters) elements are considered. The global chaotic synchronization (of all oscillators in the chain) is studied analytically and numerically.

  2. Нефедова О.А., Спевак Л.Ф., Казаков А.Л., Ли М.Г.
    Применение метода нулевого поля для решения двумерного нелинейного уравнения теплопроводности
    Компьютерные исследования и моделирование, 2023, т. 15, № 6, с. 1449-1467

    В работе рассмотрена краевая задача о движении тепловой волны для вырождающегося уравнения второго порядка параболического типа со степенной нелинейностью. Краевое условие задает уравнение движения на плоскости нулевого фронта тепловой волны, имеющего форму окружности. Предложен новый численно-аналитический алгоритм, в соответствии с которым решение строится по шагам по времени при разностной схеме дискретизации времени. На каждом шаге рассматривается краевая задача для уравнения Пуассона, к которому сводится исходное уравнение. Фактически она является обратной задачей Коши, в которой исходная граница области решения свободна от граничных условий, а на текущей границе (фронте волны) заданы два условия (Неймана и Дирихле). Решение этой задачи ищется в виде суммы частного решения уравнения Пуассона и решения соответствующего уравнения Лапласа, удовлетворяющего граничным условиям. Поскольку неоднородность зависит от искомой функции и ее производных, решение строится итерационно. Частное решение ищется методом коллокаций с помощью разложения неоднородности по радиальным базисным функциям. Обратная задача Коши для уравнения Лапласа решается методом нулевого поля применительно к круговым областям с круговыми отверстиями. Для таких задач этот метод применяется впервые. Вычислительный алгоритм оптимизирован за счет распараллеливания вычислений. Распараллеливание вычислений позволило эффективно реализовать алгоритм на высокопроизводительных вычислительных системах. На базе алгоритма была создана компьютерная программа. В качестве средства распараллеливания был выбран стандарт параллельного программирования OpenMP для языка программирования C++ как наиболее подходящий для вычислительных программ с параллельными циклами. Эффективность алгоритма и работоспособность программы были проверены сравнением результатов расчетов с известным точным решением, а также с численным решением, полученным авторами ранее с помощью метода граничных элементов. Проведенный вычислительный эксперимент показал хорошую сходимость итерационных процессов и более высокую точность нового алгоритма по сравнению с разработанным ранее. Анализ решений позволил определить наиболее подходящую систему радиальных базисных функций.

    Nefedova O.A., Spevak L.P., Kazakov A.L., Lee M.G.
    Solution to a two-dimensional nonlinear heat equation using null field method
    Computer Research and Modeling, 2023, v. 15, no. 6, pp. 1449-1467

    The paper deals with a heat wave motion problem for a degenerate second-order nonlinear parabolic equation with power nonlinearity. The considered boundary condition specifies in a plane the motion equation of the circular zero front of the heat wave. A new numerical-analytical algorithm for solving the problem is proposed. A solution is constructed stepby- step in time using difference time discretization. At each time step, a boundary value problem for the Poisson equation corresponding to the original equation at a fixed time is considered. This problem is, in fact, an inverse Cauchy problem in the domain whose initial boundary is free of boundary conditions and two boundary conditions (Neumann and Dirichlet) are specified on a current boundary (heat wave). A solution of this problem is constructed as the sum of a particular solution to the nonhomogeneous Poisson equation and a solution to the corresponding Laplace equation satisfying the boundary conditions. Since the inhomogeneity depends on the desired function and its derivatives, an iterative solution procedure is used. The particular solution is sought by the collocation method using inhomogeneity expansion in radial basis functions. The inverse Cauchy problem for the Laplace equation is solved by the null field method as applied to a circular domain with a circular hole. This method is used for the first time to solve such problem. The calculation algorithm is optimized by parallelizing the computations. The parallelization of the computations allows us to realize effectively the algorithm on high performance computing servers. The algorithm is implemented as a program, which is parallelized by using the OpenMP standard for the C++ language, suitable for calculations with parallel cycles. The effectiveness of the algorithm and the robustness of the program are tested by the comparison of the calculation results with the known exact solution as well as with the numerical solution obtained earlier by the authors with the use of the boundary element method. The implemented computational experiment shows good convergence of the iteration processes and higher calculation accuracy of the proposed new algorithm than of the previously developed one. The solution analysis allows us to select the radial basis functions which are most suitable for the proposed algorithm.

  3. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

    Loenko D.S., Sheremet M.A.
    Numerical modeling of the natural convection of a non-Newtonian fluid in a closed cavity
    Computer Research and Modeling, 2020, v. 12, no. 1, pp. 59-72

    In this paper, a time-dependent natural convective heat transfer in a closed square cavity filled with non- Newtonian fluid was considered in the presence of an isothermal energy source located on the lower wall of the region under consideration. The vertical boundaries were kept at constant low temperature, while the horizontal walls were completely insulated. The behavior of a non-Newtonian fluid was described by the Ostwald de Ville power law. The process under study was described by transient partial differential equations using dimensionless non-primitive variables “stream function – vorticity – temperature”. This method allows excluding the pressure field from the number of unknown parameters, while the non-dimensionalization allows generalizing the obtained results to a variety of physical formulations. The considered mathematical model with the corresponding boundary conditions was solved on the basis of the finite difference method. The algebraic equation for the stream function was solved by the method of successive lower relaxation. Discrete analogs of the vorticity equation and energy equation were solved by the Thomas algorithm. The developed numerical algorithm was tested in detail on a class of model problems and good agreement with other authors was achieved. Also during the study, the mesh sensitivity analysis was performed that allows choosing the optimal mesh.

    As a result of numerical simulation of unsteady natural convection of a non-Newtonian power-law fluid in a closed square cavity with a local isothermal energy source, the influence of governing parameters was analyzed including the impact of the Rayleigh number in the range 104–106, power-law index $n = 0.6–1.4$, and also the position of the heating element on the flow structure and heat transfer performance inside the cavity. The analysis was carried out on the basis of the obtained distributions of streamlines and isotherms in the cavity, as well as on the basis of the dependences of the average Nusselt number. As a result, it was established that pseudoplastic fluids $(n < 1)$ intensify heat removal from the heater surface. The increase in the Rayleigh number and the central location of the heating element also correspond to the effective cooling of the heat source.

  4. Потапов Д.И., Потапов И.И.
    Развитие берегового откоса в русле трапециевидного канала
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 581-592

    Сформулирована математическая модель эрозии берегового склона песчаного канала, происходящей под действием проходящей паводковой волны. Модель включает в себя уравнение движения квазиустановившегося гидродинамического потока в створе канала. Движение донной и береговой поверхности русла определяется из решения уравнения Экснера, которое замыкается оригинальной аналитической моделью движения влекомых наносов. Модель учитывает транзитные, гравитационные и напорные механизмы движения донного материала и не содержит в себе феноменологических параметров. Движение свободной поверхности гидродинамического потока определяется из решения дифференциальных уравнений баланса. Модель учитывает изменения средней по створу турбулентной вязкости при изменении створа канала.

    На основе метода конечных элементов получен дискретный аналог сформулированной задачи и предложен алгоритм ее решения. Особенностью алгоритма является контроль влияния движения свободной поверхности потока и расхода потока на процесс определения турбулентной вязкости потока в процессе эрозии берегового склона. Проведены численные расчеты, демонстрирующие качественное и количественное влияние данных особенностей на процесс определения турбулентной вязкости потока и эрозию берегового склона русла.

    Сравнение данных по береговым деформациям, полученных в результате численных расчетов, с известными лотковыми экспериментальными данными показали их согласование.

    Potapov D.I., Potapov I.I.
    Bank slope evolution in trapezoidal channel riverbed
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 581-592

    A mathematical model is formulated for the coastal slope erosion of sandy channel, which occurs under the action of a passing flood wave. The moving boundaries of the computational domain — the bottom surface and the free surface of the hydrodynamic flow — are determined from the solution of auxiliary differential equations. A change in the hydrodynamic flow section area for a given law of change in the flow rate requires a change in time of the turbulent viscosity averaged over the section. The bottom surface movement is determined from the Exner equation solution together with the equation of the bottom material avalanche movement. The Exner equation is closed by the original analytical model of traction loads movement. The model takes into account transit, gravitational and pressure mechanisms of bottom material movement and does not contain phenomenological parameters.

    Based on the finite element method, a discrete analogue of the formulated problem is obtained and an algorithm for its solution is proposed. An algorithm feature is control of the free surface movement influence of the flow and the flow rate on the process of determining the flow turbulent viscosity. Numerical calculations have been carried out, demonstrating qualitative and quantitative influence of these features on the determining process of the flow turbulent viscosity and the channel bank slope erosion.

    Data comparison on bank deformations obtained as a result of numerical calculations with known flume experimental data showed their agreement.

  5. Потапов И.И., Потапов Д.И.
    Модель установившегося течения реки в поперечном сечении изогнутого русла
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1163-1178

    Моделирование русловых процессов при исследовании береговых деформаций русла требует вычисления параметров гидродинамического потока, учитывающих существование вторичных поперечных течений, формирующихся на закруглении русла. Трехмерное моделирование таких процессов на текущий момент возможно только для небольших модельных каналов, для реальных речных потоков необходимы модели пониженной размерности. При этом редукция задачи от трехмерной модели движения речного потока к двумерной модели потока в плоскости створа канала предполагает, что рассматриваемый гидродинамический поток является квазистационарным, и для него выполнены гипотезы об асимптотическом поведении потока по потоковой координате створа. С учетом данных ограничений в работе сформулирована математическая модель задачи о движении стационарного турбулентного спокойного речного потока в створе канала. Задача сформулирована в смешанной постановке скорости — «вихрь – функция тока». В качестве дополнительных условий для редукции задачи требуется задание граничных условий на свободной поверхности потока для поля скорости, определяемого в нормальном и касательном направлении к оси створа. Предполагается, что значения данных скоростей должны быть определены из решения вспомогательных задач или получены из данных натурных или экспериментальных измерений.

    Для решения сформулированной задачи используется метод конечных элементов в формулировке Петрова – Галёркина. Получен дискретный аналог задачи и предложен алгоритм ее решения. Выполненные численные исследования показали в целом хорошую согласованность полученных решений при их сравнении с известными экспериментальными данными.

    Полученные погрешности авторы связывают с необходимостью более точного определения циркуляционного поля скоростей в створе потока путем подбора и калибровки более подходящей модели вычисления турбулентной вязкости и граничных условий на свободной границе створа.

    Potapov I.I., Potapov D.I.
    Model of steady river flow in the cross section of a curved channel
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1163-1178

    Modeling of channel processes in the study of coastal channel deformations requires the calculation of hydrodynamic flow parameters that take into account the existence of secondary transverse currents formed at channel curvature. Three-dimensional modeling of such processes is currently possible only for small model channels; for real river flows, reduced-dimensional models are needed. At the same time, the reduction of the problem from a three-dimensional model of the river flow movement to a two-dimensional flow model in the cross-section assumes that the hydrodynamic flow under consideration is quasi-stationary and the hypotheses about the asymptotic behavior of the flow along the flow coordinate of the cross-section are fulfilled for it. Taking into account these restrictions, a mathematical model of the problem of the a stationary turbulent calm river flow movement in a channel cross-section is formulated. The problem is formulated in a mixed formulation of velocity — “vortex – stream function”. As additional conditions for problem reducing, it is necessary to specify boundary conditions on the flow free surface for the velocity field, determined in the normal and tangential direction to the cross-section axis. It is assumed that the values of these velocities should be determined from the solution of auxiliary problems or obtained from field or experimental measurement data.

    To solve the formulated problem, the finite element method in the Petrov – Galerkin formulation is used. Discrete analogue of the problem is obtained and an algorithm for solving it is proposed. Numerical studies have shown that, in general, the results obtained are in good agreement with known experimental data. The authors associate the obtained errors with the need to more accurately determine the circulation velocities field at crosssection of the flow by selecting and calibrating a more appropriate model for calculating turbulent viscosity and boundary conditions at the free boundary of the cross-section.

  6. Лысыч М.Н.
    Компьютерное моделирование процесса обработки почвы рабочими органами почвообрабатывающих машин
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 607-627

    В работе анализируются методы исследования процесса взаимодействия почвенных сред с рабочими органами почвообрабатывающих машин. Подробно рассмотрены математические методы численного моделирования, позволяющие преодолеть недостатки аналитических и эмпирических подходов. Приводятся классификация и обзор возможностей континуальных (FEM — метод конечных элементов, CFD — вычислительная гидродинамика) и дискретных (DEM — метод дискретных элементов, SPH — гидродинамика сглаженных частиц) численных методов. На основе метода дискретных элементов разработана математическая модель, представляющая почву, в виде множества взаимодействующих сферических элементов малых размеров. Рабочие поверхности почвообрабатывающего орудия в рамках конечноэлементного приближения представлены в виде совокупности элементарных треугольников. В модели рассчитывается движение элементов почвы под действием сил контакта элементов почвы друг с другом и с рабочими поверхностями орудия (упругие силы, силы сухого и вязкого трения). Это дает возможность оценивать влияние геометрических параметров рабочих органов, технологических параметров процесса и параметров почвы на геометрические показатели смещения почвы, показатели самоустановки орудия, силовые нагрузки, показатели качества рыхления и пространственное распределение показателей. Всего исследуются 22 показателя (или распределение показателя в пространстве). Возможности математической модели демонстрируются на примере комплексного исследования процесса обработки почвы дисковой культиваторной батареей. В компьютерном эксперименте использованы виртуальный почвенный канал размером 5×1.4 м и 3D-модель дисковой культиваторной батареи. Радиус почвенных частиц принимался равным 18 мм, скорость рабочего органа — 1 м/с, общее время моделирования — 5 с. Глубина обработки составляла 10 см при углах атаки 10, 15, 20, 25 и 30°. Проверка достоверности результатов моделирования производилась на лабораторной установке, для объемного динамометрирования, путем исследования натурного образца, выполненного в полном соответствии с исследованной 3D-моделью. Контроль осуществлялся по трем составляющим вектора тягового сопротивления: $F_x$, $F_y$ и $F_z$. Сравнение данных, полученных экспериментальным путем, с данными моделирования показало, что расхождение составляет не более 22.2 %, при этом во всех случаях максимальные значения наблюдались при углах атаки 30°. Хорошая согласуемость данных по трем ключевым силовым параметрам подтверждает достоверность всего комплекса исследованных показателей.

    Lysych M.N.
    Computer simulation of the process soil treatment by tillage tools of soil processing machines
    Computer Research and Modeling, 2020, v. 12, no. 3, pp. 607-627

    The paper analyzes the methods of studying the process of interaction of soil environments with the tillage tools of soil processing machines. The mathematical methods of numerical modeling are considered in detail, which make it possible to overcome the disadvantages of analytical and empirical approaches. A classification and overview of the possibilities the continuous (FEM — finite element method, CFD — computational fluid dynamics) and discrete (DEM — discrete element method, SPH — hydrodynamics of smoothed particles) numerical methods is presented. Based on the discrete element method, a mathematical model has been developed that represents the soil in the form of a set of interacting small spherical elements. The working surfaces of the tillage tool are presented in the framework of the finite element approximation in the form of a combination of many elementary triangles. The model calculates the movement of soil elements under the action of contact forces of soil elements with each other and with the working surfaces of the tillage tool (elastic forces, dry and viscous friction forces). This makes it possible to assess the influence of the geometric parameters of the tillage tools, technological parameters of the process and soil parameters on the geometric indicators of soil displacement, indicators of the self-installation of tools, power loads, quality indicators of loosening and spatial distribution of indicators. A total of 22 indicators were investigated (or the distribution of the indicator in space). This makes it possible to reproduce changes in the state of the system of elements of the soil (soil cultivation process) and determine the total mechanical effect of the elements on the moving tillage tools of the implement. A demonstration of the capabilities of the mathematical model is given by the example of a study of soil cultivation with a disk cultivator battery. In the computer experiment, a virtual soil channel of 5×1.4 m in size and a 3D model of a disk cultivator battery were used. The radius of the soil particles was taken to be 18 mm, the speed of the tillage tool was 1 m/s, the total simulation time was 5 s. The processing depth was 10 cm at angles of attack of 10, 15, 20, 25 and 30°. The verification of the reliability of the simulation results was carried out on a laboratory stand for volumetric dynamometry by examining a full-scale sample, made in full accordance with the investigated 3D-model. The control was carried out according to three components of the traction resistance vector: $F_x$, $F_y$ and $F_z$. Comparison of the data obtained experimentally with the simulation data showed that the discrepancy is not more than 22.2%, while in all cases the maximum discrepancy was observed at angles of attack of the disk battery of 30°. Good consistency of data on three key power parameters confirms the reliability of the whole complex of studied indicators.

  7. Дьяченко Е.Н., Дик И.Г.
    Моделирование образования седиментационного и фильтрационного слоев методом дискретных элементов
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 105-120

    В работе предлагается численная модель седиментации и фильтрования суспензии, основанная на динамическом варианте метода дискретных элементов. Эта модель отражает поведение частиц на микро- и мезоуровне: образование пор, арок, хлопьев. Кроме того, предложенная модель качественно воспроизводит макроэффекты: осаждение слоя частиц, медленные процессы усадки этого слоя, уплотнения слоя под действием собственного веса частиц и приложенной извне силы.

    Dyachenko E.N., Dueck J.G.
    Modeling of sedimentation and filtration layer formation by discrete element method
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 105-120

    The numerical model of sedimentation and suspension filtration is proposed in this paper. The model is based on dynamic variant of discrete element method. This model represents the particles behavior on microand meso-scales: pores, arches, flocks formation. In addition, the proposed model qualitatively reproduces macro phenomenon: sedimentation of particle layer, slow shrinkage of the layer, sealing of the layer under its own weight of the particles and the external applied force.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  8. Якушевич Л.В.
    От однородного к неоднородному электронному аналогу ДНК
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1397-1407

    В данной работе с помощью методов математического моделирования решается задача о построении электронного аналога неоднородной ДНК. Такие электронные аналоги, наряду с другими физическими моделями живых систем, широко используются в качестве инструмента для изучения динамических и функциональных свойств этих систем. Решение задачи строится на основе алгоритма, разработанного ранее для однородной (синтетической) ДНК и модифицированного таким образом, чтобы его можно было использовать для случая неоднородной (природной) ДНК. Этот алгоритм включает следующие шаги: выбор модели, имитирующей внутреннюю подвижность ДНК; построение преобразования, позволяющего перейти от модели ДНК к ее электронному аналогу; поиск условий, обеспечивающих аналогию уравнений ДНК и уравнений электронного аналога; расчет параметров эквивалентной электрической цепи. Для описания неоднородной ДНК была выбрана модель, представляющая собой систему дискретных нелинейных дифференциальных уравнений, имитирующих угловые отклонения азотистых оснований, и соответствующий этим уравнениям гамильтониан. Значения коэффициентов в модельных уравнениях полностью определяются динамическими параметрами молекулы ДНК, включая моменты инерции азотистых оснований, жесткость сахаро-фосфатной цепи, константы, характеризующие взаимодействия между комплементарными основаниями внутри пар. В качестве основы для построения электронной модели была использована неоднородная линия Джозефсона, эквивалентная схема которой содержит четыре типа ячеек: A-, T-, G- и C-ячейки. Каждая ячейка, в свою очередь, состоит из трех элементов: емкости, индуктивности и джозефсоновского контакта. Важно, чтобы A-, T-, G- и C-ячейки джозефсоновской линии располагались в определенном порядке, который аналогичен порядку расположения азотистых оснований (A, T, G и C) в последовательности ДНК. Переход от ДНК к электронному аналогу осуществлялся с помощью А-преобразования, что позволило рассчитать значения емкости, индуктивности и джозефсоновского контакта в A-ячейках. Значения параметров для T-, G- и C-ячеек эквивалентной электрической цепи были получены из условий, накладываемых на коэффициенты модельных уравнений и обеспечивающих аналогию между ДНК и электронной моделью.

    Yakushevich L.V.
    From homogeneous to inhomogeneous electronic analogue of DNA
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1397-1407

    In this work, the problem of constructing an electronic analogue of heterogeneous DNA is solved with the help of the methods of mathematical modeling. Electronic analogs of that type, along with other physical models of living systems, are widely used as a tool for studying the dynamic and functional properties of these systems. The solution to the problem is based on an algorithm previously developed for homogeneous (synthetic) DNA and modified in such a way that it can be used for the case of inhomogeneous (native) DNA. The algorithm includes the following steps: selection of a model that simulates the internal mobility of DNA; construction of a transformation that allows you to move from the DNA model to its electronic analogue; search for conditions that provide an analogy of DNA equations and electronic analogue equations; calculation of the parameters of the equivalent electrical circuit. To describe inhomogeneous DNA, the model was chosen that is a system of discrete nonlinear differential equations simulating the angular deviations of nitrogenous bases, and Hamiltonian corresponding to these equations. The values of the coefficients in the model equations are completely determined by the dynamic parameters of the DNA molecule, including the moments of inertia of nitrous bases, the rigidity of the sugar-phosphate chain, and the constants characterizing the interactions between complementary bases in pairs. The inhomogeneous Josephson line was used as a basis for constructing an electronic model, the equivalent circuit of which contains four types of cells: A-, T-, G-, and C-cells. Each cell, in turn, consists of three elements: capacitance, inductance, and Josephson junction. It is important that the A-, T-, G- and C-cells of the Josephson line are arranged in a specific order, which is similar to the order of the nitrogenous bases (A, T, G and C) in the DNA sequence. The transition from DNA to an electronic analog was carried out with the help of the A-transformation which made it possible to calculate the values of the capacitance, inductance, and Josephson junction in the A-cells. The parameter values for the T-, G-, and C-cells of the equivalent electrical circuit were obtained from the conditions imposed on the coefficients of the model equations and providing an analogy between DNA and the electronic model.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.