Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
О проектировании нуля на линейное многообразие, многогранник и вершину многогранника. Ньютоновские методы минимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 4, с. 563-591Рассматривается подход к построению методов решения задачи квадратичного программирования для расчета направления спуска в ньютоновских методах минимизации гладкой функции на множестве, заданном набором линейных равенств. Подход состоит из двух этапов.
На первом этапе задача квадратичного программирования преобразуется численно устойчивым прямым мультипликативным алгоритмом в эквивалентную задачу о проектировании начала координат на линейное многообразие, что определяет новую математическую формулировку двойственной квадратичной задачи. Для этого предложен численно устойчивый прямой мультипликативный метод решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в расчете модифицированных факторов Холесского для построения существенно положительно определенной матрицы системы уравнений и ее решения в рамках одной процедуры, а также в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов. Причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.
На втором этапе необходимые и достаточные условия оптимальности в форме Куна–Таккера определяют расчет направления спуска — решение двойственной квадратичной задачи сводится к решению системы линейных уравнений с симметричной положительно определенной матрицей коэффициентов для расчета множителей Лагранжа и к подстановке решения в формулу для расчета направления спуска.
Доказано, что предложенный подход к расчету направления спуска численно устойчивыми прямыми мультипликативными методами на одной итерации требует по кубическому закону меньше вычислений, чем одна итерация по сравнению с известным двойственным методом Гилла и Мюррея. Кроме того, предложенный метод допускает организацию вычислительного процесса с любой начальной точки, которую пользователь выберет в качестве исходного приближения решения.
Представлены варианты постановки задачи о проектировании начала координат на линейное многообразие, выпуклый многогранник и вершину выпуклого многогранника. Также описаны взаимосвязь и реализация методов решения этих задач.
Ключевые слова: ньютоновские методы, квадратичное программирование, двойственная квадратичная задача, разреженные матрицы, факторизация Холесского, прямой мультипликативный алгоритм, численная устойчивость, задача о проектировании нуля, линейное многообразие, вершина многогранника.
Designing a zero on a linear manifold, a polyhedron, and a vertex of a polyhedron. Newton methods of minimization
Computer Research and Modeling, 2019, v. 11, no. 4, pp. 563-591Просмотров за год: 6.We consider the approaches to the construction of methods for solving four-dimensional programming problems for calculating directions for multiple minimizations of smooth functions on a set of a given set of linear equalities. The approach consists of two stages.
At the first stage, the problem of quadratic programming is transformed by a numerically stable direct multiplicative algorithm into an equivalent problem of designing the origin of coordinates on a linear manifold, which defines a new mathematical formulation of the dual quadratic problem. For this, a numerically stable direct multiplicative method for solving systems of linear equations is proposed, taking into account the sparsity of matrices presented in packaged form. The advantage of this approach is to calculate the modified Cholesky factors to construct a substantially positive definite matrix of the system of equations and its solution in the framework of one procedure. And also in the possibility of minimizing the filling of the main rows of multipliers without losing the accuracy of the results, and no changes are made in the position of the next processed row of the matrix, which allows the use of static data storage formats.
At the second stage, the necessary and sufficient optimality conditions in the form of Kuhn–Tucker determine the calculation of the direction of descent — the solution of the dual quadratic problem is reduced to solving a system of linear equations with symmetric positive definite matrix for calculating of Lagrange's coefficients multipliers and to substituting the solution into the formula for calculating the direction of descent.
It is proved that the proposed approach to the calculation of the direction of descent by numerically stable direct multiplicative methods at one iteration requires a cubic law less computation than one iteration compared to the well-known dual method of Gill and Murray. Besides, the proposed method allows the organization of the computational process from any starting point that the user chooses as the initial approximation of the solution.
Variants of the problem of designing the origin of coordinates on a linear manifold, a convex polyhedron and a vertex of a convex polyhedron are presented. Also the relationship and implementation of methods for solving these problems are described.
-
О разложении матриц при помощи метода стохастического градиентного спуска в приложении к задаче направляемой классификации микрочипов
Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 131-140Многомерные данные, при использовании значительно большего количества признаков относительно меньшего числа наблюдений, порождают хорошо известную проблему переопределённой задачи. В связи с этим, представляется целесообразным описание данных в терминах меньшего числа мета-признаков, которые вычисляются при помощи так называемых матричных факторизаций. Такие факторизации способствуют уменьшению случайного шума при сохранении наиболее существенной информации. Три новых и взаимосвязанных метода предложены в этой статье: 1) факторизационный механизм градиентного спуска с двумя (согласно размерности микрочипа) гибкими и адаптируемыми параметрами обучения, включая явные формулы их автоматического пересчета, 2) непараметрический критерий для отбора количества факторов, и 3) неотрицательная модификация градиентной факторизации, которая не требует дополнительных вычислительных затрат в сравнении с базовой моделью. Мы иллюстрируем эффективность предложенных методов в приложении к задаче направляемой классификации данных в области биоинформатики.
Ключевые слова: матричная факторизация, ненаправляемое обучение, количество факторов, непараметрический критерий, неотрицательность, оставить одного извне, классификация.
On the stochastic gradient descent matrix factorization in application to the supervised classification of microarrays
Computer Research and Modeling, 2013, v. 5, no. 2, pp. 131-140Цитирований: 4 (РИНЦ).Microarray datasets are highly dimensional, with a small number of collected samples in comparison to thousands of features. This poses a significant challenge that affects the interpretation, applicability and validation of the analytical results. Matrix factorizations have proven to be a useful method for describing data in terms of a small number of meta-features, which reduces noise, while still capturing the essential features of the data. Three novel and mutually relevant methods are presented in this paper: 1) gradient-based matrix factorization with two adaptive learning rates (in accordance with the number of factor matrices) and their automatic updates; 2) nonparametric criterion for the selection of the number of factors; and 3) nonnegative version of the gradient-based matrix factorization which doesn't require any extra computational costs in difference to the existing methods. We demonstrate effectiveness of the proposed methods to the supervised classification of gene expression data.
-
Подход к разработке алгоритмов ньютоновских методов безусловной оптимизации, программная реализация и сравнение эффективности
Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 367-377Предложен подход к увеличению эффективности алгоритма Гилла и Мюррея к построению ньютоновских методов безусловной оптимизации с регулировкой шага, основанных на факторизации Холецкого. Доказано, что стратегия выбора направления спуска определяет и решение проблемы масштабирования шагов при спуске, и аппроксимацию не квадратичными функциями, и интеграцию с методом доверительной окрестности.
Approach to development of algorithms of Newtonian methods of unconstrained optimization, their software implementation and benchmarking
Computer Research and Modeling, 2013, v. 5, no. 3, pp. 367-377Просмотров за год: 2. Цитирований: 7 (РИНЦ).The approach to increase efficiency of Gill and Murray's algorithm of Newtonian methods of unconstrained optimization with step adjustment creation is offered, rests on Cholesky’s factorization. It is proved that the strategy of choice of the descent direction also determines the solution of the problem of scaling of steps at descent, and approximation by non-quadratic functions, and integration with a method of a confidential vicinity.
-
Прямые мультипликативные методы для разреженных матриц. Несимметричные линейные системы
Компьютерные исследования и моделирование, 2016, т. 8, № 6, с. 833-860Малая практическая ценность многих численных методов решения несимметричных систем линейных уравнений с плохо обусловленными матрицами объясняется тем, что эти методы в реальных условиях ведут себя совсем иначе, чем в случае точных вычислений. Исторически вопросам устойчивости не отводилось достаточного внимания, как в численной алгебре «средних размеров», а делался акцент на решении задач максимального порядка при данных возможностях вычислительной машины, в том числе за счет некоторой потери точности результатов. Поэтому главными объектами исследования были: наиболее целесообразное хранение информации, заключенной в разреженной матрице; поддержание наибольшей степени ее разреженности на всех этапах вычислительного процесса. Таким образом, разработка эффективных численных методов решения неустойчивых систем относится к актуальным проблемам вычислительной математики.
В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения систем линейных уравнений, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Рассмотрен формат хранения разреженных матриц, преимущество которого состоит в возможности параллельного выполнения любых матричных операций без распаковывания, что значительно сокращает время выполнения операций и объем занимаемой памяти.
Прямые мультипликативные методы решения систем линейных уравнений являются наиболее приспособленными для решения задач большого размера на ЭВМ: разреженные матрицы системы позволяют получать мультипликаторы, главные строки которых также разрежены, а операция умножения вектора-строки на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора.
В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма линейного программирования предлагается положить модификацию прямого мультипликативного алгоритма решения систем линейных уравнений, основанного на интеграции техники метода линейного программирования для выбора ведущего элемента. Прямые мультипликативные методы линейного программирования являются наиболее приспособленными и для построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.
Ключевые слова: численно устойчивые прямые мультипликативные методы, несимметричные линейные системы, формат хранения разреженных матриц, параллельное выполнение матричных операций без распаковывания, минимизация заполнения главных строк мультипликаторов, разреженные матрицы.
Direct multiplicative methods for sparse matrices. Unbalanced linear systems.
Computer Research and Modeling, 2016, v. 8, no. 6, pp. 833-860Просмотров за год: 20. Цитирований: 2 (РИНЦ).Small practical value of many numerical methods for solving single-ended systems of linear equations with ill-conditioned matrices due to the fact that these methods in the practice behave quite differently than in the case of precise calculations. Historically, sustainability is not enough attention was given, unlike in numerical algebra ‘medium-sized’, and emphasis is given to solving the problems of maximal order in data capabilities of the computer, including the expense of some loss of accuracy. Therefore, the main objects of study is the most appropriate storage of information contained in the sparse matrix; maintaining the highest degree of rarefaction at all stages of the computational process. Thus, the development of efficient numerical methods for solving unstable systems refers to the actual problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving systems of linear equations, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach consists in minimization of filling the main lines of the multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats. The storage format of sparse matrices has been studied and the advantage of this format consists in possibility of parallel execution any matrix operations without unboxing, which significantly reduces the execution time and memory footprint.
Direct multiplier methods for solving systems of linear equations are best suited for solving problems of large size on a computer — sparse matrix systems allow you to get multipliers, the main row of which is also sparse, and the operation of multiplication of a vector-row of the multiplier according to the complexity proportional to the number of nonzero elements of this multiplier.
As a direct continuation of this work is proposed in the basis for constructing a direct multiplier algorithm of linear programming to put a modification of the direct multiplier algorithm for solving systems of linear equations based on integration of technique of linear programming for methods to select the host item. Direct multiplicative methods of linear programming are best suited for the construction of a direct multiplicative algorithm set the direction of descent Newton methods in unconstrained optimization by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
Прямые мультипликативные методы для разреженных матриц. Линейное программирование
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 143-165Мультипликативные методы для разреженных матриц являются наиболее приспособленными для снижения трудоемкости операций решения систем линейных уравнений, выполняемых на каждой итерации симплекс-метода. Матрицы ограничений в этих задачах слабо заполнены ненулевыми элементами, что позволяет получать мультипликаторы, главные столбцы которых также разрежены, а операция умножения вектора на мультипликатор по трудоемкости пропорциональна числу ненулевых элементов этого мультипликатора. Кроме того, при переходе к смежному базису мультипликативное представление достаточно легко корректируется. Для повышения эффективности таких методов требуется уменьшение заполненности мультипликативного представления ненулевыми элементами. Однако на каждой итерации алгоритма к последовательности мультипликаторов добавляется еще один. А трудоемкость умножения, которая линейно зависит от длины последовательности, растет. Поэтому требуется выполнять время от времени перевычисление обратной матрицы, получая ее из единичной. Однако в целом проблема не решается. Кроме того, набор мультипликаторов представляет собой последовательность структур, причем размер этой последовательности неудобно велик и точно неизвестен. Мультипликативные методы не учитывают фактора высокой степени разреженности исходных матриц и ограничения-равенства, требуют определения первоначального базисного допустимого решения задачи и, как следствие, не допускают сокращения размерности задачи линейного программирования и регулярной процедуры сжатия — уменьшения размерности мультипликаторов и исключения ненулевых элементов из всех главных столбцов мультипликаторов, полученных на предыдущих итерациях. Таким образом, разработка численных методов решения задач линейного программирования, позволяющих преодолеть или существенно ослабить недостатки схем реализации симплекс-метода, относится к актуальным проблемам вычислительной математики.
В данной работе рассмотрен подход к построению численно устойчивых прямых мультипликативных методов решения задач линейного программирования, учитывающих разреженность матриц, представленных в упакованном виде. Преимущество подхода состоит в уменьшении размерности и минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных.
В качестве прямого продолжения данной работы в основу построения прямого мультипликативного алгоритма задания направления спуска в ньютоновских методах безусловной оптимизации предлагается положить модификацию прямого мультипликативного метода линейного программирования путем интеграции одной из существующих техник построения существенно положительно-определенной матрицы вторых производных.
Ключевые слова: численно устойчивые прямые мультипликативные методы, линейное программирование, формат хранения разреженных матриц, параллельное выполнение матричных операций без распаковывания, минимизация заполнения главных строк мультипликаторов, разреженные матрицы.
Direct multiplicative methods for sparse matrices. Linear programming
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 143-165Просмотров за год: 10. Цитирований: 2 (РИНЦ).Multiplicative methods for sparse matrices are best suited to reduce the complexity of operations solving systems of linear equations performed on each iteration of the simplex method. The matrix of constraints in these problems of sparsely populated nonzero elements, which allows to obtain the multipliers, the main columns which are also sparse, and the operation of multiplication of a vector by a multiplier according to the complexity proportional to the number of nonzero elements of this multiplier. In addition, the transition to the adjacent basis multiplier representation quite easily corrected. To improve the efficiency of such methods requires a decrease in occupancy multiplicative representation of the nonzero elements. However, at each iteration of the algorithm to the sequence of multipliers added another. As the complexity of multiplication grows and linearly depends on the length of the sequence. So you want to run from time to time the recalculation of inverse matrix, getting it from the unit. Overall, however, the problem is not solved. In addition, the set of multipliers is a sequence of structures, and the size of this sequence is inconvenient is large and not precisely known. Multiplicative methods do not take into account the factors of the high degree of sparseness of the original matrices and constraints of equality, require the determination of initial basic feasible solution of the problem and, consequently, do not allow to reduce the dimensionality of a linear programming problem and the regular procedure of compression — dimensionality reduction of multipliers and exceptions of the nonzero elements from all the main columns of multipliers obtained in previous iterations. Thus, the development of numerical methods for the solution of linear programming problems, which allows to overcome or substantially reduce the shortcomings of the schemes implementation of the simplex method, refers to the current problems of computational mathematics.
In this paper, the approach to the construction of numerically stable direct multiplier methods for solving problems in linear programming, taking into account sparseness of matrices, presented in packaged form. The advantage of the approach is to reduce dimensionality and minimize filling of the main rows of multipliers without compromising accuracy of the results and changes in the position of the next processed row of the matrix are made that allows you to use static data storage formats.
As a direct continuation of this work is the basis for constructing a direct multiplicative algorithm set the direction of descent in the Newton methods for unconstrained optimization is proposed to put a modification of the direct multiplier method, linear programming by integrating one of the existing design techniques significantly positive definite matrix of the second derivatives.
-
Обоснование гипотезы об оптимальных оценках скорости сходимости численных методов выпуклой оптимизации высоких порядков
Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 737-753В данной работе рассматривается проксимальный быстрый градиентный метод Монтейро – Свайтера (2013 г.), в котором используется один шаг метода Ньютона для приближенного решения вспомогательной задачи на каждой итерации проксимального метода. Метод Монтейро – Свайтера является оптимальным (по числу вычислений градиента и гессиана оптимизируемой функции) для достаточно гладких задач выпуклой оптимизации в классе методов, использующих только градиент и гессиан оптимизируемой функции. За счет замены шага метода Ньютона на шаг недавно предложенного тензорного метода Ю. Е. Нестерова (2018 г.), а также за счет специального обобщения условия подбора шага в проксимальном внешнем быстром градиентном методе удалось предложить оптимальный тензорный метод, использующий старшие производные. В частности, такой тензорный метод, использующий производные до третьего порядка включительно, оказался достаточно практичным ввиду сложности итерации, сопоставимой со сложностью итерации метода Ньютона. Таким образом, получено конструктивное решение задачи, поставленной Ю. Е. Нестеровым в 2018 г., об устранении зазора в точных нижних и завышенных верхних оценках скорости сходимости для имеющихся на данный момент тензорных методов порядка $p \geqslant 3$.
Ключевые слова: метод Ньютона, матрица Гессе, нижние оценки, методы высокого порядка, тензорные методы, проксимальный быстрый градиентный метод.
The global rate of convergence for optimal tensor methods in smooth convex optimization
Computer Research and Modeling, 2018, v. 10, no. 6, pp. 737-753Просмотров за год: 75.In this work we consider Monteiro – Svaiter accelerated hybrid proximal extragradient (A-HPE) framework and accelerated Newton proximal extragradient (A-NPE) framework. The last framework contains an optimal method for rather smooth convex optimization problems with second-order oracle. We generalize A-NPE framework for higher order derivative oracle (schemes). We replace Newton’s type step in A-NPE that was used for auxiliary problem by Newton’s regularized (tensor) type step (Yu. Nesterov, 2018). Moreover we generalize large step A-HPE/A-NPE framework by replacing Monteiro – Svaiter’s large step condition so that this framework could work for high-order schemes. The main contribution of the paper is as follows: we propose optimal highorder methods for convex optimization problems. As far as we know for that moment there exist only zero, first and second order optimal methods that work according to the lower bounds. For higher order schemes there exists a gap between the lower bounds (Arjevani, Shamir, Shiff, 2017) and existing high-order (tensor) methods (Nesterov – Polyak, 2006; Yu.Nesterov, 2008; M. Baes, 2009; Yu.Nesterov, 2018). Asymptotically the ratio of the rates of convergences for the best existing methods and lower bounds is about 1.5. In this work we eliminate this gap and show that lower bounds are tight. We also consider rather smooth strongly convex optimization problems and show how to generalize the proposed methods to this case. The basic idea is to use restart technique until iteration sequence reach the region of quadratic convergence of Newton method and then use Newton method. One can show that the considered method converges with optimal rates up to a logarithmic factor. Note, that proposed in this work technique can be generalized in the case when we can’t solve auxiliary problem exactly, moreover we can’t even calculate the derivatives of the functional exactly. Moreover, the proposed technique can be generalized to the composite optimization problems and in particular to the constraint convex optimization problems. We also formulate a list of open questions that arise around the main result of this paper (optimal universal method of high order e.t.c.).
-
О некоторых стохастических методах зеркального спуска для условных задач онлайн-оптимизации
Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 205-217Задача выпуклой онлайн-оптимизации естественно возникают в случаях, когда имеет место обновления статистической информации. Для задач негладкой оптимизации хорошо известен метод зеркального спуска. Зеркальный спуск — это расширение субградиентного метода для решения негладких выпуклых задач оптимизации на случай неевкидова расстояния. Работа посвящена стохастическим аналогам недавно предложенных методов зеркального спуска для задач выпуклой онлайн-оптимизации с выпуклыми липшицевыми (вообще говоря, негладкими) функциональными ограничениями. Это означает, что вместо (суб)градиента целевого функционала и функционального ограничения мы используем их стохастические (суб)градиенты. Точнее говоря, допустим, что на замкнутом подмножестве $n$-мерного векторного пространства задано $N$ выпуклых липшицевых негладких функционалов. Рассматривается задача минимизации среднего арифметического этих функционалов с выпуклым липшицевым ограничением. Предложены два метода для решения этой задачи с использованием стохастических (суб)градиентов: адаптивный (не требует знания констант Липшица ни для целевого функционала, ни для ограничения), а также неадаптивный (требует знания константы Липшица для целевого функционала и ограничения). Отметим, что разрешено вычислять стохастический (суб)градиент каждого целевого функционала только один раз. В случае неотрицательного регрета мы находим, что количество непродуктивных шагов равно $O$($N$), что указывает на оптимальность предложенных методов. Мы рассматриваем произвольную прокс-структуру, что существенно для задач принятия решений. Приведены результаты численных экспериментов, позволяющие сравнить работу адаптивного и неадаптивного методов для некоторых примеров. Показано, что адаптивный метод может позволить существенно улучшить количество найденного решения.
Ключевые слова: задача выпуклой онлайн-оптимизации, негладкая задача условной оптимизации, адаптивный зеркальный спуск, липшицев функционал, стохастический (суб)градиент.
On some stochastic mirror descent methods for constrained online optimization problems
Computer Research and Modeling, 2019, v. 11, no. 2, pp. 205-217Просмотров за год: 42.The problem of online convex optimization naturally occurs in cases when there is an update of statistical information. The mirror descent method is well known for non-smooth optimization problems. Mirror descent is an extension of the subgradient method for solving non-smooth convex optimization problems in the case of a non-Euclidean distance. This paper is devoted to a stochastic variant of recently proposed Mirror Descent methods for convex online optimization problems with convex Lipschitz (generally, non-smooth) functional constraints. This means that we can still use the value of the functional constraint, but instead of (sub)gradient of the objective functional and the functional constraint, we use their stochastic (sub)gradients. More precisely, assume that on a closed subset of $n$-dimensional vector space, $N$ convex Lipschitz non-smooth functionals are given. The problem is to minimize the arithmetic mean of these functionals with a convex Lipschitz constraint. Two methods are proposed, for solving this problem, using stochastic (sub)gradients: adaptive method (does not require knowledge of Lipschitz constant neither for the objective functional, nor for the functional of constraint) and non-adaptivemethod (requires knowledge of Lipschitz constant for the objective functional and the functional of constraint). Note that it is allowed to calculate the stochastic (sub)gradient of each functional only once. In the case of non-negative regret, we find that the number of non-productive steps is $O$($N$), which indicates the optimality of the proposed methods. We consider an arbitrary proximal structure, which is essential for decisionmaking problems. The results of numerical experiments are presented, allowing to compare the work of adaptive and non-adaptive methods for some examples. It is shown that the adaptive method can significantly improve the number of the found solutions.
-
Синтез структуры организованных систем как центральная проблема эволюционной кибернетики
Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1103-1124В статье рассматриваются подходы к эволюционному моделированию синтеза организованных систем и анализируются методологические проблемы эволюционных вычислений этого направления. На основе анализа работ по эволюционной кибернетике, теории эволюции, теории систем и синергетике сделан вывод о наличии открытых проблем в задачах формализации синтеза организованных систем и моделирования их эволюции. Показано, что теоретической основой для практики эволюционного моделирования являются положения синтетической теории эволюции. Рассмотрено использование виртуальной вычислительной среды для машинного синтеза алгоритмов решения задач. На основе полученных в процессе моделирования результатов сделан вывод о наличии ряда условий, принципиально ограничивающих применимость методов генетического программирования в задачах синтеза функциональных структур. К основным ограничениям относятся необходимость для фитнес-функции отслеживать поэтапное приближение к решению задачи и неприменимость данного подхода к задачам синтеза иерархически организованных систем. Отмечено, что результаты, полученные в практике эволюционного моделирования в целом за все время его существования, подтверждают вывод о принципиальной ограниченности возможностей генетического программирования при решении задач синтеза структуры организованных систем. В качестве источников принципиальных трудностей для машинного синтеза системных структур указаны отсутствие направлений для градиентного спуска при структурном синтезе и отсутствие закономерности случайного появления новых организованных структур. Сделан вывод об актуальности рассматриваемых проблем для теории биологической эволюции. Обосновано положение о биологической специфике практически возможных путей синтеза структуры организованных систем. В качестве теоретической интерпретации обсуждаемой проблемы предложено рассматривать системно-эволюционную концепцию П.К. Анохина. Процесс синтеза функциональных структур рассматривается в этом контексте как адаптивная реакция организмов на внешние условия, основанная на их способности к интегративному синтезу памяти, потребностей и информации о текущих условиях. Приведены результаты актуальных исследований, свидетельствующие в пользу данной интерпретации. Отмечено, что физические основы биологической интегративности могут быть связаны с явлениями нелокальности и несепарабельности, характерными для квантовых систем. Отмечена связь рассматриваемой в данной работе проблематики с проблемой создания сильного искусственного интеллекта.
Ключевые слова: эволюционное моделирование, кибернетика, теория систем, теория эволюции, генетические алгоритмы, искусственный интеллект.
Synthesis of the structure of organised systems as central problem of evolutionary cybernetics
Computer Research and Modeling, 2023, v. 15, no. 5, pp. 1103-1124The article provides approaches to evolutionary modelling of synthesis of organised systems and analyses methodological problems of evolutionary computations of this kind. Based on the analysis of works on evolutionary cybernetics, evolutionary theory, systems theory and synergetics, we conclude that there are open problems in formalising the synthesis of organised systems and modelling their evolution. The article emphasises that the theoretical basis for the practice of evolutionary modelling is the principles of the modern synthetic theory of evolution. Our software project uses a virtual computing environment for machine synthesis of problem solving algorithms. In the process of modelling, we obtained the results on the basis of which we conclude that there are a number of conditions that fundamentally limit the applicability of genetic programming methods in the tasks of synthesis of functional structures. The main limitations are the need for the fitness function to track the step-by-step approach to the solution of the problem and the inapplicability of this approach to the problems of synthesis of hierarchically organised systems. We note that the results obtained in the practice of evolutionary modelling in general for the whole time of its existence, confirm the conclusion the possibilities of genetic programming are fundamentally limited in solving problems of synthesizing the structure of organized systems. As sources of fundamental difficulties for machine synthesis of system structures the article points out the absence of directions for gradient descent in structural synthesis and the absence of regularity of random appearance of new organised structures. The considered problems are relevant for the theory of biological evolution. The article substantiates the statement about the biological specificity of practically possible ways of synthesis of the structure of organised systems. As a theoretical interpretation of the discussed problem, we propose to consider the system-evolutionary concept of P.K.Anokhin. The process of synthesis of functional structures in this context is an adaptive response of organisms to external conditions based on their ability to integrative synthesis of memory, needs and information about current conditions. The results of actual studies are in favour of this interpretation. We note that the physical basis of biological integrativity may be related to the phenomena of non-locality and non-separability characteristic of quantum systems. The problems considered in this paper are closely related to the problem of creating strong artificial intelligence.
-
Прямые мультипликативные методы для разреженных матриц. Ньютоновские методы
Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 679-703Рассматривается численно устойчивый прямой мультипликативный алгоритм решения систем линейных уравнений, учитывающий разреженность матриц, представленных в упакованном виде. Преимущество алгоритма состоит в возможности минимизации заполнения главных строк мультипликаторов без потери точности результатов, причем изменения в позиции очередной обрабатываемой строки матрицы не вносятся, что позволяет использовать статические форматы хранения данных. Решение системы линейных уравнений прямым мультипликативным алгоритмом — это, как и решение с помощью $LU$-разложения, просто другая схема реализации метода исключения Гаусса.
В данной работе этот алгоритм лежит в основе решения следующих задач.
Задача 1. Задание направления спуска в ньютоновских методах безусловной оптимизации путем интеграции одной из известных техник построения существенно положительно определенной матрицы. Такой подход позволяет ослабить или снять дополнительные специфические трудности, обусловленные необходимостью решения больших систем уравнений с разреженными матрицами, представленных в упакованном виде.
Задача 2. Построение новой математической формулировки задачи квадратичного программирования и новой формы задания необходимых и достаточных условий оптимальности. Они достаточно просты и могут быть использованы для построения методов математического программирования, например для поиска минимума квадратичной функции на многогранном множестве ограничений, основанного на решениях систем линейных уравнений, размерность которых не выше числа переменных целевой функции.
Задача 3. Построение непрерывного аналога задачи минимизации вещественного квадратичного многочлена от булевых переменных и новой формы задания необходимых и достаточных условий оптимальности для разработки методов их решения за полиномиальное время. В результате исходная задача сводится к задаче поиска минимального расстояния между началом координат и угловой точкой выпуклого многогранника (полиэдра), который является возмущением $n$-мерного куба и описывается системой двойных линейных неравенств с верхней треугольной матрицей коэффициентов с единицами на главной диагонали. Исследованию подлежат только две грани, одна из которых или обе содержат вершины, ближайшие к началу координат. Для их вычисления достаточно решить $4n – 4$ систем линейных уравнений и выбрать среди них все ближайшие равноудаленные вершины за полиномиальное время. Задача минимизации квадратичного полинома является $NP$-трудной, поскольку к ней сводится $NP$-трудная задача о вершинном покрытии для произвольного графа. Отсюда следует вывод, что $P = NP$, в основе построения которого лежит выход за пределы целочисленных методов оптимизации.
Ключевые слова: $NP$-трудные задачи, разреженные матрицы, ньютоновские методы, прямой мультипликативный алгоритм, направление спуска, новые математические формулировки, необходимые и достаточные условия оптимальности, минимизация псевдобулевой функции, псевдобулево программирование, линейное программирование.
Direct multiplicative methods for sparse matrices. Newton methods
Computer Research and Modeling, 2017, v. 9, no. 5, pp. 679-703Просмотров за год: 7. Цитирований: 1 (РИНЦ).We consider a numerically stable direct multiplicative algorithm of solving linear equations systems, which takes into account the sparseness of matrices presented in a packed form. The advantage of the algorithm is the ability to minimize the filling of the main rows of multipliers without losing the accuracy of the results. Moreover, changes in the position of the next processed row of the matrix are not made, what allows using static data storage formats. Linear system solving by a direct multiplicative algorithm is, like the solving with $LU$-decomposition, just another scheme of the Gaussian elimination method implementation.
In this paper, this algorithm is the basis for solving the following problems:
Problem 1. Setting the descent direction in Newtonian methods of unconditional optimization by integrating one of the known techniques of constructing an essentially positive definite matrix. This approach allows us to weaken or remove additional specific difficulties caused by the need to solve large equation systems with sparse matrices presented in a packed form.
Problem 2. Construction of a new mathematical formulation of the problem of quadratic programming and a new form of specifying necessary and sufficient optimality conditions. They are quite simple and can be used to construct mathematical programming methods, for example, to find the minimum of a quadratic function on a polyhedral set of constraints, based on solving linear equations systems, which dimension is not higher than the number of variables of the objective function.
Problem 3. Construction of a continuous analogue of the problem of minimizing a real quadratic polynomial in Boolean variables and a new form of defining necessary and sufficient conditions of optimality for the development of methods for solving them in polynomial time. As a result, the original problem is reduced to the problem of finding the minimum distance between the origin and the angular point of a convex polyhedron, which is a perturbation of the $n$-dimensional cube and is described by a system of double linear inequalities with an upper triangular matrix of coefficients with units on the main diagonal. Only two faces are subject to investigation, one of which or both contains the vertices closest to the origin. To calculate them, it is sufficient to solve $4n – 4$ linear equations systems and choose among them all the nearest equidistant vertices in polynomial time. The problem of minimizing a quadratic polynomial is $NP$-hard, since an $NP$-hard problem about a vertex covering for an arbitrary graph comes down to it. It follows therefrom that $P = NP$, which is based on the development beyond the limits of integer optimization methods.
-
Об одном методе минимизации выпуклой липшицевой функции двух переменных на квадрате
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 379-395В статье получены оценки скорости сходимости по функции для недавно предложенного Ю.Е. Нестеровым метода минимизации выпуклой липшицевой функции двух переменных на квадрате с фиксированной стороной. Идея метода — деление квадрата на меньшие части и постепенное их удаление так, чтобы в оставшейся достаточно малой части все значения целевой функции были достаточно близки к оптимальному. При этом метод заключается вр ешении вспомогательных задач одномерной минимизации вдоль разделяющих отрезков и не предполагает вычисления точного значения градиента целевого функционала. Основной результат работы о необходимом количестве итераций для достижений заданной точности доказан вкла ссе гладких выпуклых функций, имеющих липшицев градиент. При этом отмечено, что свойство липшицевости градиента достаточно потребовать не на всем квадрате, а лишь на некоторых отрезках. Показано, что метод может работать при наличии погрешностей решения вспомогательных одномерных задач, а также при вычислении направлений градиентов. Также описана ситуация, когда возможно пренебречь временными затратами (или уменьшить их) на решение вспомогательных одномерных задач. Для некоторых примеровэк спериментально продемонстрировано, что метод может эффективно работать и на некоторых классах негладких функций. При этом построен пример простой негладкой функции, для которой при неудачном выборе субградиента даже в случае точного решения вспомогательных одномерных задач может не наблюдаться сходимость метода. Проведено сравнение работы метода Ю.Е. Нестерова, метода эллипсоидов и градиентного спуска для некоторых гладких выпуклых функций. Эксперименты показали, что метод Ю.Е. Нестерова может достигать желаемой точности решения задачи за меньшее (в сравнении с другими рассмотренными методами) время. В частности, замечено, что при увеличении точности искомого решения время работы метода Ю.Е. Нестерова может расти медленнее, чем время работы метода эллипсоидов.
Ключевые слова: задача минимизации, выпуклый функционал, липшицев функционал, липшицев градиент, негладкий функционал, субградиент, градиентный спуск, метод эллипсоидов, скорость сходимости.
One method for minimization a convex Lipschitz-continuous function of two variables on a fixed square
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 379-395Просмотров за год: 34.In the article we have obtained some estimates of the rate of convergence for the recently proposed by Yu. E.Nesterov method of minimization of a convex Lipschitz-continuous function of two variables on a square with a fixed side. The idea of the method is to divide the square into smaller parts and gradually remove them so that in the remaining sufficiently small part. The method consists in solving auxiliary problems of one-dimensional minimization along the separating segments and does not imply the calculation of the exact value of the gradient of the objective functional. The main result of the paper is proved in the class of smooth convex functions having a Lipschitz-continuous gradient. Moreover, it is noted that the property of Lipschitzcontinuity for gradient is sufficient to require not on the whole square, but only on some segments. It is shown that the method can work in the presence of errors in solving auxiliary one-dimensional problems, as well as in calculating the direction of gradients. Also we describe the situation when it is possible to neglect or reduce the time spent on solving auxiliary one-dimensional problems. For some examples, experiments have demonstrated that the method can work effectively on some classes of non-smooth functions. In this case, an example of a simple non-smooth function is constructed, for which, if the subgradient is chosen incorrectly, even if the auxiliary one-dimensional problem is exactly solved, the convergence property of the method may not hold. Experiments have shown that the method under consideration can achieve the desired accuracy of solving the problem in less time than the other methods (gradient descent and ellipsoid method) considered. Partially, it is noted that with an increase in the accuracy of the desired solution, the operating time for the Yu. E. Nesterov’s method can grow slower than the time of the ellipsoid method.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"