Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'demographic dynamics':
Найдено статей: 9
  1. Олейник Е.Б., Ивашина Н.В., Шмидт Ю.Д.
    Моделирование процессов миграции населения: методы и инструменты (обзор)
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1205-1232

    Миграция оказывает существенное влияние на формирование демографической структуры населения территорий, состояние региональных и локальных рынков труда. Быстрое изменение численности трудоспособного населения той или иной территории из-за миграционных процессов приводит к дисбалансу спроса и предложения на рынках труда, изменению демографической структуры населения. Миграция во многом является отражением социально-экономических процессов, происходящих в обществе. Поэтому становятся актуальными вопросы, связанные с изучением факторов миграции, направления, интенсивности и структуры миграционных потоков, прогнозированием их величины.

    Для анализа, прогнозирования миграционных процессов и оценки их последствий часто используется математический инструментарий, позволяющий с нужной точностью моделировать миграционные процессы для различных территорий на основе имеющихся статистических данных. В последние годы как в России, так и в зарубежных странах появилось много научных работ, посвященных моделированию внутренних и внешних миграционных потоков с использованием математических методов. Следовательно, для формирования целостной картины основных тенденций и направлений исследований в этой области возникла необходимость в систематизации наиболее часто используемых методов и инструментов моделирования.

    В представленном обзоре на основе анализа современных отечественных и зарубежных публикаций представлены основные подходы к моделированию миграции, основные составляющие методологии моделирования миграционных процессов — этапы, методы, модели и классификация моделей. Обзор содержит два раздела: методы моделирования миграционных процессов и модели миграции. В первом разделе приведено описание основных методов, используемых в процессе разработки моделей — эконометрических, клеточных автоматов, системно-динамических, вероятностных, балансовых, оптимизации и кластерного анализа. Во втором — выделены и описаны наиболее часто встречающиеся классы моделей — регрессионные, агент-ориентированные, имитационные, оптимизационные, веро- ятностные, балансовые, динамические и комбинированные. Рассмотрены особенности, преимущества и недостатки различных типов моделей миграционных процессов, проведен их сравнительный анализ и разработаны общие рекомендации по выбору математического инструментария для моделирования.

    Oleynik E.B., Ivashina N.V., Shmidt Y.D.
    Migration processes modelling: methods and tools (overview)
    Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1205-1232

    Migration has a significant impact on the shaping of the demographic structure of the territories population, the state of regional and local labour markets. As a rule, rapid change in the working-age population of any territory due to migration processes results in an imbalance in supply and demand on labour markets and a change in the demographic structure of the population. Migration is also to a large extent a reflection of socio-economic processes taking place in the society. Hence, the issues related to the study of migration factors, the direction, intensity and structure of migration flows, and the prediction of their magnitude are becoming topical issues these days.

    Mathematical tools are often used to analyze, predict migration processes and assess their consequences, allowing for essentially accurate modelling of migration processes for different territories on the basis of the available statistical data. In recent years, quite a number of scientific papers on modelling internal and external migration flows using mathematical methods have appeared both in Russia and in foreign countries in recent years. Consequently, there has been a need to systematize the currently most commonly used methods and tools applied in migration modelling to form a coherent picture of the main trends and research directions in this field.

    The presented review considers the main approaches to migration modelling and the main components of migration modelling methodology, i. e. stages, methods, models and model classification. Their comparative analysis was also conducted and general recommendations on the choice of mathematical tools for modelling were developed. The review contains two sections: migration modelling methods and migration models. The first section describes the main methods used in the model development process — econometric, cellular automata, system-dynamic, probabilistic, balance, optimization and cluster analysis. Based on the analysis of modern domestic and foreign publications on migration, the most common classes of models — regression, agent-based, simulation, optimization, probabilistic, balance, dynamic and combined — were identified and described. The features, advantages and disadvantages of different types of migration process models were considered.

  2. Кетова К.В., Романовский Ю.М., Русяк И.Г.
    Математическое моделирование динамики человеческого капитала
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 329-342

    В условиях развития современной экономики человеческий капитал является одним из главных факторов экономического роста. Формирование человеческого капитала начинается с рождения человека и продолжается в течение всей жизни, поэтому величина человеческого капитала неотделима от его носителей, что, в свою очередь, затрудняет учет данного фактора. Это привело к тому, что в настоящее время нет общепринятых методик расчета величины человеческого капитала. Можно выделить лишь несколько подходов к измерению человеческого капитала: стоимостной подход (по доходам или инвестициям) и индексный подход, из которых наиболее известен подход, разработанный под эгидой ООН.

    В данной работе поставленная задача рассматривается совместно с задачей демографической динамики, решаемой во временно-возрастной плоскости, что позволяет наиболее полно учесть влияние временных изменений демографической структуры на динамику человеческого капитала.

    Задача демографической динамики ставится в рамках модели Мак-Кендрика – фон Ферстера на основе уравнения динамики возрастного состава. Вид функций распределения рождений, смертности и миграции населения определяется на основе имеющейся статистической информации. Приводится численное решение задачи. Представлены анализ и прогноз демографических показателей. На основе задачи демографической динамики формулируется экономико-математическая модель динамики человеческого капитала. В задаче моделирования динамики человеческого капитала рассматриваются три составляющие: образовательная, составляющая здоровья и культурная (духовная) составляющая. Для описания эволюции составляющих человеческого капитала используется двумерное уравнение типа уравнения переноса. Объемы инвестиций в составляющие человеческого капитала определяются на основе расходных статей бюджета и частных расходов с учетом характерного временного жизненного цикла демографических элементов. Для прогнозирования динамики суммарной величины человеческого капитала используется одномерное кинетическое уравнение. Приводится методика расчета динамики данного фактора как функции времени. Представлены расчетные данные по динамике человеческого капитала для Российской Федерации. Как показали исследования, величина человеческого капитала интенсивно нарастала до 2008 года, в дальнейшем наступил период стабилизации, но после 2014 года имеет место отрицательная динамика данной величины.

    Ketova K.V., Romanovsky Y.M., Rusyak I.G.
    Mathematical modeling of the human capital dynamic
    Computer Research and Modeling, 2019, v. 11, no. 2, pp. 329-342

    In the conditions of the development of modern economy, human capital is one of the main factors of economic growth. The formation of human capital begins with the birth of a person and continues throughout life, so the value of human capital is inseparable from its carriers, which in turn makes it difficult to account for this factor. This has led to the fact that currently there are no generally accepted methods of calculating the value of human capital. There are only a few approaches to the measurement of human capital: the cost approach (by income or investment) and the index approach, of which the most well-known approach developed under the auspices of the UN.

    This paper presents the assigned task in conjunction with the task of demographic dynamics solved in the time-age plane, which allows to more fully take into account the temporary changes in the demographic structure on the dynamics of human capital.

    The task of demographic dynamics is posed within the framework of the Mac-Kendrick – von Foerster model on the basis of the equation of age structure dynamics. The form of distribution functions for births, deaths and migration of the population is determined on the basis of the available statistical information. The numerical solution of the problem is given. The analysis and forecast of demographic indicators are presented. The economic and mathematical model of human capital dynamics is formulated on the basis of the demographic dynamics problem. The problem of modeling the human capital dynamics considers three components of capital: educational, health and cultural (spiritual). Description of the evolution of human capital components uses an equation of the transfer equation type. Investments in human capital components are determined on the basis of budget expenditures and private expenditures, taking into account the characteristic time life cycle of demographic elements. A one-dimensional kinetic equation is used to predict the dynamics of the total human capital. The method of calculating the dynamics of this factor is given as a time function. The calculated data on the human capital dynamics are presented for the Russian Federation. As studies have shown, the value of human capital increased rapidly until 2008, in the future there was a period of stabilization, but after 2014 there is a negative dynamics of this value.

    Просмотров за год: 34.
  3. Малков С.Ю.
    Режимы с обострением в истории человечества или воспоминания о будущем
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 931-947

    В статье рассмотрены режимы с обострением в социальной и биологической истории. Проведен анализ возможных причин резкого ускорения биологических и социальных процессов в определенные исторические эпохи. С использованием математического моделирования показано, что гиперболические тренды в социальной и биологической эволюции могут быть следствием переходных процессов в периоды расширения экологических ниш. Ускорение биологического видообразования связано с тем, что более ранние виды своей жизнедеятельностью изменяют среду обитания, делая ее более разнообразной, насыщая органикой, тем самым создавая благоприятные условия для появления новых видов. В социальной истории расширение экологических ниш связано с технологическими революциями, важнейшими из которых были: неолитическая революция — переход от присваивающего хозяйства к производящему (10 тыс. лет назад), «городская революция» — переход от неолита к бронзовому веку (5 тыс. лет назад), «осевое время» — переход к массовому освоению железных орудий (2.5 тыс. лет назад), промышленная революция — переход от ручного труда к машинному (200 лет назад). Все эти технологические революции сопровождались резким демографическим ростом, изменениями в социальной и политической сфе- рах. Так, наблюдаемый в последние столетия гиперболический характер роста некоторых демографических, экономических и других показателей мировой динамики — это следствие переходных процессов, начавшихся вследствие промышленной революции (замены ручного труда машинным) и предваряющих переход общества на новую стадию своего развития. Точка сингулярности гиперболического тренда характеризует окончание начального этапа этого процесса и переход к завершающей его стадии. Предложена математическая модель, описывающая демографические и экономические изменения в эпохи перемен. Показано, что прямым аналогом современной ситуации в этом смысле является «осевое время» (период с 8 века до нашей эры до начала нашей эры). Наличие такой аналогии позволяет заглянуть в будущее, изучая прошлое.

    Malkov S.Yu.
    Regimes with exacerbation in the history of mankind or memories of the future
    Computer Research and Modeling, 2019, v. 11, no. 5, pp. 931-947

    The article describes the modes with the exacerbation of social and biological history. The analysis of the possible causes of the sharp acceleration of biological and social processes in certain historical periods is carried out. Using mathematical modeling shows that hyperbolic trends in social and biological evolution may be the result of transitional processes in periods of expansion of ecological niches. Accelerating biological speciation due to the fact that its earlier life change inhabitancy, making it more diverse, saturating the organic, thus creating favourable conditions for the emergence of new species. In the social history of the expansion of ecological niches associated with technological revolutions, of which the most important were: Neolithic revolution — the transition from appropriating economy to producing economy (10 thousand years ago), “urban revolution” — a shift from the Neolithic epoch to the bronze epoch (5 thousand years ago), the “axial age” — transition to the development of iron tools (2.5 thousand years ago), the industrial revolution — the transition from manual labor to machine production (200 years ago). All of these technological revolutions have been accompanied by dramatic population growth, changes in social and political spheres. So, observed in the last century, hyperbolic nature of some demographic, economic growth and other indicators of world dynamics is a consequence of the transition process, which began as a result of the industrial revolution and to prepare for the transition of the society to a new stage of its development. Singularity point of hyperbolic trend shows the end of the initial phase of the process and marks the transition to the final stage. The mathematical model describing the demographic and economic changes in the era of change is proposed. It is shown that a direct analogue of the contemporary situation in this sense is the “axial age” (since 8 century BC to the beginning of our era). The existence of this analogy allows you to see into the future by studying the past.

  4. Говорухин В.Н., Загребнева А.Д.
    Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843

    В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.

    Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.

    Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.

    Govorukhin V.N., Zagrebneva A.D.
    Population waves and their bifurcations in a model “active predator – passive prey”
    Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843

    Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.

    The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.

    It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.

  5. Малков С.Ю., Коротаев А.В., Давыдова О.И.
    Мировая динамика как объект моделирования (к пятидесятилетию первого доклада Римскому клубу)
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1371-1394

    В последней четверти ХХ века характер глобального демографического и экономического развития стал быстро изменяться: непрерывно ускорявшийся рост основных характеристик, имевший место на протяжении предыдущих двухсот лет, сменился на резкое их торможение. В условиях этих изменений возрастает роль долгосрочного прогноза мировой динамики. При этом прогноз должен основываться не на инерционном проецировании прошлых тенденций в будущие периоды, а на математическом моделировании фундаментальных закономерностей исторического развития. В статье изложены предварительные результаты исследований по математическому моделированию и прогнозированию мировой демографо-экономической динамики, основанные на таком подходе. Предложены базовые динамические уравнения, отражающие эту динамику, обоснована модификация этих уравнений применительно к разным историческим эпохам. Для каждой исторической эпохи на основе анализа соответствующей ей системы уравнений определялся фазовый портрет и проводился анализ его особенностей. На основе этого анализа делались выводы о закономерностях мирового развития в рассматриваемый период.

    Показано, что для моделирования исторической динамики важным является математическое описание развития технологий. Предложен способ описания технологической динамики, на основе которого предложены соответствующие математические уравнения.

    Рассмотрены три стадии исторического развития: стадия аграрного общества (до начала XIX века), стадия индустриального общества (XIX–ХХ века) и современная эпоха. Предложенная математическая модель показывает, что для аграрного общества характерна циклическая демографо-экономическая динамика, в то время как для индустриального общества характерен рост демографических и экономических характеристик, близкий к гиперболическому.

    Результаты математического моделирования показали, что человечество в настоящее время переходит на принципиально новую фазу исторического развития. Происходит торможение роста и переход человеческого общества в новое фазовое состояние, облик которого еще не определен. Рассмотрены различные варианты дальнейшего развития.

    Malkov S.Yu., Korotayev A.V., Davydova O.I.
    World dynamics as an object of modeling (for the fiftieth anniversary of the first report to the Club of Rome)
    Computer Research and Modeling, 2022, v. 14, no. 6, pp. 1371-1394

    In the last quarter of the twentieth century, the nature of global demographic and economic development began to change rapidly: the continuously accelerating growth of the main characteristics that took place over the previous two hundred years was replaced by a sharp slowdown. In the context of these changes, the role of a long-term forecast of global dynamics is increasing. At the same time, the forecast should be based not on inertial projection of past trends into future periods, but on mathematical modeling of fundamental patterns of historical development. The article presents preliminary results of research on mathematical modeling and forecasting of global demographic and economic dynamics based on this approach. The basic dynamic equations reflecting this dynamics are proposed, the modification of these equations in relation to different historical epochs is justified. For each historical epoch, based on the analysis of the corresponding system of equations, a phase portrait was determined and its features were analyzed. Based on this analysis, conclusions were drawn about the patterns of world development in the period under review.

    It is shown that mathematical description of technology development is important for modeling historical dynamics. A method for describing technological dynamics is proposed, on the basis of which the corresponding mathematical equations are proposed.

    Three stages of historical development are considered: the stage of agrarian society (before the beginning of the XIX century), the stage of industrial society (XIX–XX centuries) and the modern era. The proposed mathematical model shows that an agrarian society is characterized by cyclical demographic and economic dynamics, while an industrial society is characterized by an increase in demographic and economic characteristics close to hyperbolic.

    The results of mathematical modeling have shown that humanity is currently moving to a fundamentally new phase of historical development. There is a slowdown in growth and the transition of human society into a new phase state, the shape of which has not yet been determined. Various options for further development are considered.

  6. Белотелов Н.В., Логинов Ф.В.
    Агентная модель межкультурных взаимодействий: возникновение культурных неопределенностей
    Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1143-1162

    В статье описывается имитационная агентная модель межкультурных взаимодействий в стране, население которой принадлежит к разным культурам. Считается, что пространство культур может быть представлено как гильбертово пространство, в котором различным культурам соответствуют определенные подпространства. В модели понятие «культура» понимается как некоторое структурированное подпространство гильбертова пространства. Это позволяет описывать состояние агентов вектором в гильбертовом пространстве. Считается, что каждый агент описывается принадлежностью к определенной культуре. Численности агентов, принадлежащие определенным культурам, определяются демографическими процессами, которые соответствуют данным культурам, глубиной и целостностью образовательного процесса, а также интенсивностью межкультурных контактов. Взаимодействие между агентами происходит внутри кластеров, на которые по определенным критериям разбивается все множество агентов. При взаимодействии между агентами по определенному алгоритму изменяются длина и угол, характеризующий состояние агента. В процессе имитации в зависимости от количества агентов, относящихся к различным культурам, интенсивности демографических и образовательных процессов, а также интенсивности межкультурных контактов формируются совокупности агентов (кластеры), агенты которых принадлежат разным культурам. Такие межкультурные кластеры не принадлежат целиком ни к одной из рассматриваемых первоначально в модели культур. Такие межкультурные кластеры порождают неопределенности в культурной динамике. В работе приводятся результаты имитационных экспериментов, которые иллюстрируют влияние демографических и образовательных процессов на динамику межкультурных кластеров. Обсуждаются вопросы развития предложенного подхода к изучению (обсуждению) переходных состояний развития культур.

    Belotelov N.V., Loginov F.V.
    The agent model of intercultural interactions: the emergence of cultural uncertainties
    Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1143-1162

    The article describes a simulation agent-based model of intercultural interactions in a country whose population belongs to different cultures. It is believed that the space of cultures can be represented as a Hilbert space, in which certain subspaces correspond to different cultures. In the model, the concept of culture is understood as a structured subspace of the Hilbert space. This makes it possible to describe the state of agents by a vector in a Hilbert space. It is believed that each agent is described by belonging to a certain «culture». The number of agents belonging to certain cultures is determined by demographic processes that correspond to these cultures, the depth and integrity of the educational process, as well as the intensity of intercultural contacts. Interaction between agents occurs within clusters, into which, according to certain criteria, the entire set of agents is divided. When agents interact according to a certain algorithm, the length and angle that characterize the state of the agent change. In the process of imitation, depending on the number of agents belonging to different cultures, the intensity of demographic and educational processes, as well as the intensity of intercultural contacts, aggregates of agents (clusters) are formed, the agents of which belong to different cultures. Such intercultural clusters do not entirely belong to any of the cultures initially considered in the model. Such intercultural clusters create uncertainties in cultural dynamics. The paper presents the results of simulation experiments that illustrate the influence of demographic and educational processes on the dynamics of intercultural clusters. The issues of the development of the proposed approach to the study (discussion) of the transitional states of the development of cultures are discussed.

  7. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

    Malkov S.Yu., Davydova O.I.
    Modernization as a global process: the experience of mathematical modeling
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873

    The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.

    Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.

  8. Разработана динамическая макромодельмиров ой динамики. В модели мир разбит на 19 регионов по географическому принципу согласно классификации Организации объединенных наций. Внутреннее развитие регионов описывается уравнениями разностного типа для демографических и экономических индикаторов, таких как численностьнас еления, валовой продукт, валовое накопление. Межрегиональные взаимодействия представляют собой агрегированные торговые потоки от региона к региону и описываются регрессионными уравнениями. В качестве регрессоров использовались время, валовой продукт экспортера и валовой продукт импортера. Рассматривалосьчеты ре типа: временная парная регрессия — зависимость торгового потока от времени, экспортная функция — зависимостьд оли торгового потока в валовом продукте экспортера от валового продукта импортера, импортная функция — зависимостьд оли торгового потока в валовой продукции импортера от валового продукта экспортера, множественная регрессия — зависимостьт оргового потока от валовых продуктов экспортера и импортера. Для каждого типа применялосьд ва вида функциональной зависимости: линейная и логарифмически-линейная, всего исследовано восемьв ариантов торгового уравнения. Проведено сравнение качества регрессионных моделей по коэффициенту детерминации. Расчеты показывают, что модель удовлетворительно аппроксимирует динамику монотонно меняющихся показателей. Проанализирована динамика немонотонных торговых потоков, для их аппроксимации предложено три вида функциональной зависимости от времени. Показано, что с 10%-й погрешностью множество внешнеторговых рядов может бытьприб лижено пространством семи главных компонент. Построен прогноз автономного развития регионов и глобальной динамики до 2040 года.

    Makhov S.A.
    Forecasting demographic and macroeconomic indicators in a distributed global model
    Computer Research and Modeling, 2023, v. 15, no. 3, pp. 757-779

    The paper present a dynamic macro model of world dynamics. The world is divided into 19 geographic regions in the model. The internal development of the regions is described by regression equations for demographic and economic indicators (Population, Gross Domestic Product, Gross Capital Formation). The bilateral trade flows from region to region describes interregional interactions and represented the trade submodel. Time, the gross product of the exporter and the gross product of the importer were used as regressors. Four types were considered: time pair regression — dependence of trade flow on time, export function — dependence of the share of trade flow in the gross product of the exporter on the gross product of the importer, import function — dependence of the share of trade flow in the gross product of the importer on the gross product of the exporter, multiple regression — dependence of trade flow on the gross products of the exporter and importer. Two types of functional dependence were used for each type: linear and log-linear, in total eight variants of the trading equation were studied. The quality of regression models is compared by the coefficient of determination. By calculations the model satisfactorily approximates the dynamics of monotonically changing indicators. The dynamics of non-monotonic trade flows is analyzed, three types of functional dependence on time are proposed for their approximation. It is shown that the number of foreign trade series can be approximated by the space of seven main components with a 10% error. The forecast of regional development and global dynamics up to 2040 is constructed.

  9. Хавинсон М.Ю., Лосев А.С., Кулаков М.П.
    Моделирование численности занятого, безработного и экономически неактивного населения Дальнего Востока России
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 251-264

    Исследования кризисной социально-демографической ситуации на Дальнем Востоке требуют не только применения традиционных статистических методов, но и концептуального анализа возможных сценариев развития, основанного на принципах синергетики. Статья посвящена моделированию численности занятого, безработного и экономически неактивного населения Дальнего Востока на основе нелинейных дифференциальных уравнений с постоянными коэффициентами. Рассмотрена базовая нелинейная математическая модель, основанная на принципе парных взаимодействий и являющаяся частным случаем модели борьбы условных информаций по Д.С. Чернавскому. Методом наименьших квадратов, адаптированным для данной модели, найдены точечные оценки параметров, характеризующих динамику численностей занятых, безработных и экономически неактивного населения Дальнего Востока России за 2000–2017 гг. Средняя ошибка аппроксимации составила не более 5.17 %. Полученная точечная оценка параметров в асимптотическом случае соответствует неустойчивому фокусу (расходящимся колебаниям оцениваемых показателей численности), что свидетельствует, в аспекте проведенного моделирования, о постепенном увеличении диспропорций между рассматриваемыми группами населения и обвале их динамики в инерционном сценарии. Обнаружено, что в окрестности инерционного сценария формируется нерегулярная хаотическая динамика, что усложняет возможность эффективного управления. Установлено, что изменение лишь одного параметра в модели (в частности, миграционного) при отсутствии структурных социально-экономических сдвигов может лишь отсрочить обвал динамики в долгосрочной перспективе либо привести к появлению сложно предсказуемых режимов (хаоса). Найдены другие оценки параметров модели, соответствующие устойчивой динамике (устойчивому фокусу), которая неплохо согласуется с реальной динамикой численности рассматриваемых групп населения. Согласно исследованной математической модели бифуркационными являются параметры, характеризующие темпы оттока трудоспособного населения, рождаемость (омоложение населения), а также темп миграционного притока безработных. Показано, что переход к устойчивому сценарию возможен при одновременном воздействии на несколько этих параметров, что требует сложного комплекса мероприятий по закреплению населения Дальнего Востока России и роста уровня их доходов, в пересчете на компенсацию инфраструктурной разреженности. Для разработки конкретных мер в рамках государственной политики необходимы дальнейшие экономические и социологические исследования.

    Khavinson M.J., Losev A.S., Kulakov M.P.
    Modeling the number of employed, unemployed and economically inactive population in the Russian Far East
    Computer Research and Modeling, 2021, v. 13, no. 1, pp. 251-264

    Studies of the crisis socio-demographic situation in the Russian Far East require not only the use of traditional statistical methods, but also a conceptual analysis of possible development scenarios based on the synergy principles. The article is devoted to the analysis and modeling of the number of employed, unemployed and economically inactive population using nonlinear autonomous differential equations. We studied a basic mathematical model that takes into account the principle of pair interactions, which is a special case of the model for the struggle between conditional information of D. S. Chernavsky. The point estimates for the parameters are found using least squares method adapted for this model. The average approximation error was no more than 5.17%. The calculated parameter values correspond to the unstable focus and the oscillations with increasing amplitude of population number in the asymptotic case, which indicates a gradual increase in disparities between the employed, unemployed and economically inactive population and a collapse of their dynamics. We found that in the parametric space, not far from the inertial scenario, there are domains of blow-up and chaotic regimes complicating the ability to effectively manage. The numerical study showed that a change in only one model parameter (e.g. migration) without complex structural socio-economic changes can only delay the collapse of the dynamics in the long term or leads to the emergence of unpredictable chaotic regimes. We found an additional set of the model parameters corresponding to sustainable dynamics (stable focus) which approximates well the time series of the considered population groups. In the mathematical model, the bifurcation parameters are the outflow rate of the able-bodied population, the fertility (“rejuvenation of the population”), as well as the migration inflow rate of the unemployed. We found that the transition to stable regimes is possible with the simultaneous impact on several parameters which requires a comprehensive set of measures to consolidate the population in the Russian Far East and increase the level of income in terms of compensation for infrastructure sparseness. Further economic and sociological research is required to develop specific state policy measures.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.