Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'countries of the world':
Найдено статей: 6
  1. The 3rd BRICS Mathematics Conference
    Компьютерные исследования и моделирование, 2019, т. 11, № 6, с. 1015-1016
    The 3rd BRICS Mathematics Conference
    Computer Research and Modeling, 2019, v. 11, no. 6, pp. 1015-1016
  2. Андрущенко В.А., Максимов Ф.А., Сызранова Н.Г.
    Моделирование полета и разрушения болида Бенешов
    Компьютерные исследования и моделирование, 2018, т. 10, № 5, с. 605-618

    Астероидно-кометная опасность в течение последних десятилетий признана научными и правительственными кругами всех стран мира одной из самых существенных угроз развития и даже существования нашей цивилизации. Одним из аспектов деятельности по предотвращению этой опасности является изучение вторжения достаточно крупных метеорных тел в атмосферу и их движения в ней, сопровождаемых большим числом физическо-химических явлений. Особый интерес вызывает падение метеорных тел, для которых прослежены их траекторные и прочие характеристики, и найдены сами выпавшие метеориты или их фрагменты. В настоящей работе изучено падение именно такого тела. На основе комплексной физико-математической модели, определяющей движение и разрушение космических тел естественного происхождения в атмосфере Земли, рассмотрены движение и фрагментация очень яркого болида Бенешов (Benešov, EN070591), который был зарегистрирован в Чехии Европейской наблюдательной системой в 1991 г. Для этого болида были получены уникальные наблюдательные данные, включая спектры излучения. В настоящей работе проведено моделирование аэробаллистики метеороида Бенешов и его фрагментов с учетом их сложного характера разрушения под воздействием тепловых и силовых факторов. Скорость метеорного тела, унос массы под действием тепловых потоков определяются из решения системы уравнений классической физической теории метеоров. При этом учитывается переменность параметра уноса массы по траектории. Процесс фрагментации метеороида рассматривается в рамках модели последовательного дробления на основе статистической теории прочности, с учетом влияния масштабного фактора на предел прочности объекта. Проведены расчеты совместного обтекания системы тел (осколков метеорита) при проявлении эффекта интерференции. Для расчета обтекания конгломерата осколков метеороида разработан метод моделирования на системе сеток, который позволяет рассматривать фрагменты различных форм, размеров и масс, а также допускает достаточно произвольное их относительное положение в потоке. Из-за неточностей в расчете траектории ученые 23 года не могли найти осколки этого болида. Благодаря современным методикам и более точным расчетам ученые выявили место падения, которое оказалось существенно удаленным от ожидаемого. После этого были обнаружены четыре небольших обломка метеорита. Проведенные расчеты движения и разрушения болида Бенешов показывают, что на процессы его взаимодействия с атмосферой влияет множество факторов: массовые и прочностные характеристики болида, параметры движения, механизмы разрушения, процессы взаимодействия фрагментов, включая эффекты интерференции, и др.

    Andruschenko V.A., Maksimov F.A., Syzranova N.G.
    Simulation of flight and destruction of the Benešov bolid
    Computer Research and Modeling, 2018, v. 10, no. 5, pp. 605-618

    Comets and asteroids are recognized by the scientists and the governments of all countries in the world to be one of the most significant threats to the development and even the existence of our civilization. Preventing this threat includes studying the motion of large meteors through the atmosphere that is accompanied by various physical and chemical phenomena. Of particular interest to such studies are the meteors whose trajectories have been recorded and whose fragments have been found on Earth. Here, we study one of such cases. We develop a model for the motion and destruction of natural bodies in the Earth’s atmosphere, focusing on the Benešov bolid (EN070591), a bright meteor registered in 1991 in the Czech Republic by the European Observation System. Unique data, that includes the radiation spectra, is available for this bolid. We simulate the aeroballistics of the Benešov meteoroid and of its fragments, taking into account destruction due to thermal and mechanical processes. We compute the velocity of the meteoroid and its mass ablation using the equations of the classical theory of meteor motion, taking into account the variability of the mass ablation along the trajectory. The fragmentation of the meteoroid is considered using the model of sequential splitting and the statistical stress theory, that takes into account the dependency of the mechanical strength on the length scale. We compute air flows around a system of bodies (shards of the meteoroid) in the regime where mutual interplay between them is essential. To that end, we develop a method of simulating air flows based on a set of grids that allows us to consider fragments of various shapes, sizes, and masses, as well as arbitrary positions of the fragments relative to each other. Due to inaccuracies in the early simulations of the motion of this bolid, its fragments could not be located for about 23 years. Later and more accurate simulations have allowed researchers to locate four of its fragments rather far from the location expected earlier. Our simulations of the motion and destruction of the Benešov bolid show that its interaction with the atmosphere is affected by multiple factors, such as the mass and the mechanical strength of the bolid, the parameters of its motion, the mechanisms of destruction, and the interplay between its fragments.

    Просмотров за год: 24. Цитирований: 1 (РИНЦ).
  3. Щербаков А.В.
    Экономика Чернавского
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 397-417

    В настоящей статье изложен научный подход Дмитрия Сергеевича Чернавского к вопросам моделирования экономических процессов. Излагается история работы Дмитрия Сергеевича на экономическом направлении, представлены ее основные этапы и достижения. Одним из важнейших достижений в области экономического анализа стало предсказание группой ученых, возглавляемых Д. С. Чернавским, основных кризисов, произошедших в нашей стране за последние 20 лет, а именно дефолта 1998 года, кризиса промышленного производства второй половины 2000-х, кризиса 2008 года и последовавшей за ним рецессии. В качестве примера динамического анализа мировых макроэкономических процессов приведена модель функционирования доллара в качестве мировой валюты. На данном конкретном примере показана возможность сеньёража за счет эмиссии доллара и рассчитано «окно возможностей», которое позволяет эмитировать доллары в качестве мировой валюты без ущерба для собственной экономики.

    Как пример динамического анализа экономики отдельного государства рассматривается модель развития закрытого общества (без внешних экономических связей) в однопродуктовом приближении. Модель основана на принципах рыночной экономики, то есть динамика цены определяется балансом спроса и предложения. Показано, что в общем случае состояние рыночного равновесия не единственно. Возможно несколько стационарных состояний, отличающихся уровнем производства и потребления. Рассмотрен эффект адресной денежной эмиссии в низкопродуктивном состоянии. Показано, что в зависимости от ее размера и адреса она может привести к переходу в высокопродуктивное состояние и просто вызвать инфляцию без перехода. Обсуждается связь этих результатов с кейнсианским и монетаристским подходами.

    Scherbakov A.V.
    Economy of Chernavskii
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 397-417

    The present article sets out the scientific approach of Dmitry Sergeevich Chernavskii to the modelling of economic processes. It recounts the history of works of Dmitry Sergeyevich on the economic front, its milestones and achievements. One of the most important advances in the economic analysis was the prediction by a team of scientists headed by D. S. Chernavskii, the major crises that have occurred in our country over the last 20 years, namely, the default of 1998, the crisis of industrial production in the second half of the 2000s, the 2008 crisis and the ensuing recession. As an example, the dynamic analysis of the global macroeconomic processes shows the model of functioning of the dollar as the world currency. On this particular example shows the possibility of seigniorage due to the issue of the dollar and the calculated “window of opportunity” that allows you to issue dollars as the global currency, without prejudice to its own economy.

    A model for the development of a closed society (without external economic relations) in the one-product approach is considered as an example of dynamic analysis of the economy of a separate state. The model is based on the principles of market economy, i.e. the dynamics of prices is determined by the balance of supply and demand. It is shown that in the general case, the state of market equilibrium is not unique. Several steady states with different levels of production and consumption are possible. Effect of addressed emission of money in underproductive state is considered. It is shown that, depending on its size it can lead to the transition to a highly productive condition, and just cause inflation without transition. The relationship of these results with the “Keynesian” and “monetarist” approaches is discussed.

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  4. Малков С.Ю.
    Моделирование закономерностей мировой динамики
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 419-432

    В статье проведен анализ исторического процесса с использованием методов синергетики (науки о нелинейных развивающихся системах в природе и обществе), развитых в работах Д. С. Чернавского применительно к экономическим и социальным системам. Показано, что социальная самоорганизация в зависимости от условий приводит к формированию как обществ с сильной внутренней конкуренцией (Y-структуры), так и обществ кооперативного типа (Х-структуры). Y-структуры характерны для стран Запада, Х-структуры характерны для стран Востока. Показано, что в XIX и XX веках имело место ускоренное формирование и усиление Y-структур. Однако в настоящее время мировая система вошла в период серьезных структурных перемен в экономической, политической, идеологической сферах: доминирование Y-структур заканчивается. Рассмотрены возможные пути дальнейшего развития мировой системы, связанные с изменением режимов самоорганизации и ограничением внутренней конкуренции. Этот переход будет длительным и сложным. В этих условиях объективно будет возрастать ценность цивилизационного опыта России, на основе которого в ней была сформирована социальная система комбинированного типа. Показано, что в конечном итоге неизбежен переход от нынешнего доминирования Y-структур к абсолютно новой глобальной системе, устойчивость которой будет основана на новой идеологии, новой духовности (то есть новой «условной информации», по Д. С. Чернавскому), делающей разворот от принципов конкуренции к принципам сотрудничества.

    Malkov S.Yu.
    World dynamics patterns modeling
    Computer Research and Modeling, 2017, v. 9, no. 3, pp. 419-432

    In the article is carried out the analysis of historical process with the use of methods of synergetics (science about the nonlinear developing systems in nature and the society), developed in the works of D. S. Chernavskii in connection with to economic and social systems. It is shown that social self-organizing depending on conditions leads to the formation of both the societies with the strong internal competition (Y-structures) and cooperative type societies (X-structures). Y-structures are characteristic for the countries of the West, X-structure are characteristic for the countries of the East. It is shown that in XIX and in XX centuries occurred accelerated shaping and strengthening of Y-structures. However, at present world system entered into the period of serious structural changes in the economic, political, ideological spheres: the domination of Y-structures concludes. Are examined the possible ways of further development of the world system, connected with change in the regimes of self-organizing and limitation of internal competition. This passage will be prolonged and complex. Under these conditions it will objectively grow the value of the civilizational experience of Russia, on basis of which was formed combined type social system. It is shown that ultimately inevitable the passage from the present do-mination of Y-structures to the absolutely new global system, whose stability will be based on the new ideology, the new spirituality (i.e., new “conditional information” according D. S. Chernavskii), which makes a turn from the principles of competition to the principles of collaboration.

    Просмотров за год: 17.
  5. Малков С.Ю., Давыдова О.И.
    Модернизация как глобальный процесс: опыт математического моделирования
    Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 859-873

    В статье проведен анализ эмпирических данных по долгосрочной демографической и экономической динамике стран мира за период с начала XIX века по настоящее время. В качестве показателей, характеризующих долгосрочную демографическую и экономическую динамику стран мира, были выбраны данные по численности населения и ВВП ряда стран мира за период 1500–2016 годов. Страны выбирались таким образом, чтобы в их число вошли представители с различным уровнем развития (развитые и развивающиеся страны), а также страны из различных регионов мира (Северная Америка, Южная Америка, Европа, Азия, Африка). Для моделирования и обработки данных использована специально разработанная математическая модель. Представленная модель является автономной системой дифференциальных уравнений, которая описывает процессы социально-экономической модернизации, в том числе процесс перехода от аграрного общества к индустриальному и постиндустриальному. В модель заложена идея о том, что процесс модернизации начинается с возникновения в традиционном обществе инновационного сектора, развивающегося на основе новых технологий. Население из традиционного сектора постепенно перемещается в инновационный сектор. Модернизация завершается, когда большая часть населения переходит в инновационный сектор.

    При работе с моделью использовались статистические методы обработки данных, методы Big Data, включая иерархическую кластеризацию. С помощью разработанного алгоритма на базе метода случайного спуска были идентифицированы параметры модели и проведена ее верификация на основе эмпирических рядов, а также проведено тестирование модели с использованием статистических данных, отражающих изменения, наблюдаемые в развитых и развивающихся странах в период происходящей в течение последних столетий модернизации. Тестирование модели продемонстрировало ее высокое качество — отклонения расчетных кривых от статистических данных, как правило, небольшие и происходят в периоды войн и экономических кризисов. Проведенный анализ статистических данных по долгосрочной демографической и экономической динамике стран мира позволил определить общие закономерности и формализовать их в виде математической модели. Модель будет использоваться с целью прогноза демографической и экономической динамики в различных странах мира.

    Malkov S.Yu., Davydova O.I.
    Modernization as a global process: the experience of mathematical modeling
    Computer Research and Modeling, 2021, v. 13, no. 4, pp. 859-873

    The article analyzes empirical data on the long-term demographic and economic dynamics of the countries of the world for the period from the beginning of the 19th century to the present. Population and GDP of a number of countries of the world for the period 1500–2016 were selected as indicators characterizing the long-term demographic and economic dynamics of the countries of the world. Countries were chosen in such a way that they included representatives with different levels of development (developed and developing countries), as well as countries from different regions of the world (North America, South America, Europe, Asia, Africa). A specially developed mathematical model was used for modeling and data processing. The presented model is an autonomous system of differential equations that describes the processes of socio-economic modernization, including the process of transition from an agrarian society to an industrial and post-industrial one. The model contains the idea that the process of modernization begins with the emergence of an innovative sector in a traditional society, developing on the basis of new technologies. The population is gradually moving from the traditional sector to the innovation sector. Modernization is completed when most of the population moves to the innovation sector.

    Statistical methods of data processing and Big Data methods, including hierarchical clustering were used. Using the developed algorithm based on the random descent method, the parameters of the model were identified and verified on the basis of empirical series, and the model was tested using statistical data reflecting the changes observed in developed and developing countries during the period of modernization taking place over the past centuries. Testing the model has demonstrated its high quality — the deviations of the calculated curves from statistical data are usually small and occur during periods of wars and economic crises. Thus, the analysis of statistical data on the long-term demographic and economic dynamics of the countries of the world made it possible to determine general patterns and formalize them in the form of a mathematical model. The model will be used to forecast demographic and economic dynamics in different countries of the world.

  6. Титлянова А.А.
    Школы по математической биологии 1973–1992 гг.
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 411-422

    В кратком обзоре описаны тематика и выборочные доклады Школ по моделированию сложных биологических систем. Школы явились естественным развитием этого направления науки в нашей стране, местом коллективного мозгового штурма, вдохновляемого такими выдающимися фигурами современности, как А. А. Ляпунов, Н. В. Тимофеев-Ресовский, А. М. Молчанов. На школах в острой дискуссионной форме поднимались общие вопросы методологии математического моделирования в биологии и экологии, обсуждались фундаментальные принципы структурной организации и функции сложных биологических и экологических систем. Школы служили важным примером междисциплинарного взаимодействия ученых разных не только и не столько специальностей, сколько разных мироощущений, подходов и способов отодвигать границу непознанного. Что тем не менее объединяло математиков и биологов, участников школ, так это общее понимание плодотворности данного союза. Доклады, дискуссии, размышления, сохранившиеся в материалах Школ, не потеряли актуальность до сих пор и могут служить определенными ориентирами для современного поколения ученых.

    Titlyanova A.A.
    Schools on mathematical biology 1973–1992
    Computer Research and Modeling, 2016, v. 8, no. 2, pp. 411-422

    This is a brief review of the subjects, and an impression of some talks, which were given at the Schools on modelling complex biological systems. Those Schools reflected a logical progress in this way of thinking in our country and provided a place for collective “brain-storming” inspired by prominent scientists of the last century, such as A. A. Lyapunov, N. V. Timofeeff-Ressovsky, A. M. Molchanov. At the Schools, general issues of methodology of mathematical modeling in biology and ecology were raised in the form of heated debates, the fundamental principles for how the structure of matter is organized and how complex biological systems function and evolve were discussed. The Schools served as an important sample of interdisciplinary actions by the scientists of distinct perceptions of the World, or distinct approaches and modes to reach the boundaries of the Unknown, rather than of different specializations. What was bringing together the mathematicians and biologists attending the Schools was the common understanding that the alliance should be fruitful. Reported in the issues of School proceedings, the presentations, discussions, and reflections have not yet lost their relevance so far and might serve as certain guidance for the new generation of scientists.

    Просмотров за год: 2.

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.