Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Система моделирования процессов экструзии и формообразования полимерных материалов для управления качеством рукавных пленок
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 137-158Разработана гибкая программная система моделирования процесса получения рукавных полимерных пленок методом экструзии с раздувом, включающая библиотеку математических моделей процессов экструзии и формообразования пленочного рукава, подсистемы перенастройки на новый тип пленки и исследования процессов экструзии и формообразования для управления качеством пленки в режиме ее изготовления. Подсистема перенастройки позволяет выбрать оборудование экструзионной линии по технико-экономическим показателям, синтезировать 3D-модель линии и сформировать регламентные диапазоны управляющих воздействий для заданного типа пленки. Подсистема исследования позволяет рассчитать температурные профили нагрева и охлаждения материала, геометрические и оптические характеристики пленки в зависимости от управляющих воздействий на стадиях экструзии и формообразования и выбрать значения управляющих воздействий, обеспечивающие заданное качество пленки.
Ключевые слова: математические модели, программный комплекс, управление качеством, раздувная экструзия, полимерные пленки.
Modeling system of extrusion and forming polymeric materials for blown film quality control
Computer Research and Modeling, 2014, v. 6, no. 1, pp. 137-158Просмотров за год: 7. Цитирований: 3 (РИНЦ).Flexible software for modeling polymeric film production by use of blown extrusion has been developed. It consists of library of mathematical models for extrusion and forming blown film, sub-system for changeover to new type of film and sub-system for investigation of extrusion and forming for film quality control under film production. The sub-system for changeover allows to choose the equipment of extrusion line on technical and economic indices, to synthesize 3D model of the line and to generate regulation ranges of regime parameters for given type of film. The sub-system for investigation allows to calculate temperature profiles of heating and cooling material, geometrical and optical characteristics of film depending on regime parameters for stages of extrusion and forming and to evaluate regime parameters ensuring given quality of polymeric film.
-
Многоуровневое математическое моделирование возникновения и роста опухоли в ткани эпителия
Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 585-604В работе предлагается математическая модель возникновения раковых образований в двумерной ткани эпителия. Базисная модель роста эпителия описывает возникновение интенсивного движения и роста ткани при ее повреждении. Для этого в схеме расчета предусмотрена возможность деления и интеркаляции клеток. Предполагается, что движение клеток растущего эпителия вызывается волной митоген-активируемой протеинкиназы, которая в свою очередь активируется химико-механическим сигналом, распространяющимся по ткани из-за ее локального повреждения. В работе предполагается, что раковые клетки возникают из-за локального сбоя пространственной синхронизации циркадианных ритмов. Изучение эволюционной динамики модели позволяет изучить физико-химические свойства опухоли и определить связь между возникновением раковых клеток и параметрами развития всей ткани, координирующей свою эволюцию посредством обмена химико-механическими сигналами.
Ключевые слова: математическое моделирование, рост злокачественной опухоли, циркадианные ритмы, генная регуляция, синхронизация, сложные системы.
Multiscale mathematical modeling occurrence and growth of a tumour in an epithelial tissue
Computer Research and Modeling, 2014, v. 6, no. 4, pp. 585-604Просмотров за год: 10. Цитирований: 12 (РИНЦ).In this paper we propose a mathematical model of cancer tumour occurrence in a quasi twodimensional epithelial tissue. Basic model of the epithelium growth describes the appearance of intensive movement and growth of tissue when it is damaged. The model includes the effects of division of cells and intercalation. It is assumed that the movement of cells is caused by the wave of mitogen-activated protein kinase (MAPK), which in turn activated by the chemo-mechanical signal propagating along tissue due to its local damage. In this paper it is assumed that cancer cells arise from local failure of spatial synchronization of circadian rhythms. The study of the evolutionary dynamics of the model could determine the chemo-physical properties of a tumour, and spatial relationship between the occurrence of cancer cells and development of the entire tissue parameters coordinating its evolution through the exchange of chemical and mechanical signals.
-
Высокопроизводительная идентификация моделей кинетики гидридного фазового перехода
Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 171-183Гидриды металлов представляют собой интересный класс соединений, способных обратимо связывать большое количество водорода и потому представляющих интерес для приложений энергетики. Особенно важно понимание факторов, влияющих на кинетику формирования и разложения гидридов. Особенности материала, экспериментальной установки и условий влияют на математическое описание процессов, которое может претерпевать существенные изменения в ходе обработки экспериментальных данных. В статье предложен общий подход к численному моделированию формирования и разложения гидридов металлов и решения обратных задач оценки параметров материала по данным измерений. Модели делятся на два класса: диффузионные, принимающие во внимание градиент концентрации водорода в решетке металла, и модели с быстрой диффузией. Первые более сложны и имеют форму неклассических краевых задач параболического типа. Описан подход к сеточному решению таких задач. Вторые решаются сравнительно просто, но могут сильно меняться при изменении модельных предположений. Опыт обработки экспериментальных данных показывает, что необходимо гибкое программное средство, позволяющее, с одной стороны, строить модели из стандартных блоков, свободно изменяя их при необходимости, а с другой — избегать реализации рутинных алгоритмов, причем приспособленное для высокопроизводительных систем различной парадигмы. Этим условиям удовлетворяет представленная в работе библиотека HIMICOS, протестированная на большом числе экспериментальных данных. Она позволяет моделировать кинетику формирования и разложения гидридов металлов (и других соединений) на трех уровнях абстракции. На низком уровне пользователь определяет интерфейсные процедуры, такие как расчет слоя по времени на основании предыдущего слоя или всей предыстории, вычисление наблюдаемой величины и независимой переменной по переменным задачи, сравнение кривой с эталонной. При этом могут использоваться алгоритмы, решающие краевые задачи параболического типа со свободными границами в весьма общей постановке, в том числе с разнообразными квазилинейными (линейными по производной) граничными условиями, а также вычисляющие расстояние между кривыми в различных метрических пространствах и с различной нормировкой. Это средний уровень абстракции. На высоком уровне достаточно выбрать готовую модель для того или иного материала и модифицировать ее применительно к условиям эксперимента.
Ключевые слова: гидриды металлов, моделирование кинетики фазового перехода, численное моделирование химической кинетики.
High-throughput identification of hydride phase-change kinetics models
Computer Research and Modeling, 2020, v. 12, no. 1, pp. 171-183Metal hydrides are an interesting class of chemical compounds that can reversibly bind a large amount of hydrogen and are, therefore, of interest for energy applications. Understanding the factors affecting the kinetics of hydride formation and decomposition is especially important. Features of the material, experimental setup and conditions affect the mathematical description of the processes, which can undergo significant changes during the processing of experimental data. The article proposes a general approach to numerical modeling of the formation and decomposition of metal hydrides and solving inverse problems of estimating material parameters from measurement data. The models are divided into two classes: diffusive ones, that take into account the gradient of hydrogen concentration in the metal lattice, and models with fast diffusion. The former are more complex and take the form of non-classical boundary value problems of parabolic type. A rather general approach to the grid solution of such problems is described. The second ones are solved relatively simply, but can change greatly when model assumptions change. Our experience in processing experimental data shows that a flexible software tool is needed; a tool that allows, on the one hand, building models from standard blocks, freely changing them if necessary, and, on the other hand, avoiding the implementation of routine algorithms. It also should be adapted for high-performance systems of different paradigms. These conditions are satisfied by the HIMICOS library presented in the paper, which has been tested on a large number of experimental data. It allows simulating the kinetics of formation and decomposition of metal hydrides, as well as related tasks, at three levels of abstraction. At the low level, the user defines the interface procedures, such as calculating the time layer based on the previous layer or the entire history, calculating the observed value and the independent variable from the task variables, comparing the curve with the reference. Special algorithms can be used for solving quite general parabolic-type boundary value problems with free boundaries and with various quasilinear (i.e., linear with respect to the derivative only) boundary conditions, as well as calculating the distance between the curves in different metric spaces and with different normalization. This is the middle level of abstraction. At the high level, it is enough to choose a ready tested model for a particular material and modify it in relation to the experimental conditions.
-
Об алгоритмической сущности биологии
Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 641-652Степень математизации физики чрезвычайно высока, и это позволяет понимать законы природы путем анализа математических структур, которые их описывают. Но это верно лишь для физических законов. Напротив, степень математизации биологии весьма невелика, и все попытки ее математизации ограничиваются применением тех математических методов, которые употребляются для описания физических систем. Такой подход, возможно, ошибочен, поскольку биологическим системам придаются атрибуты, которых у них нет. Некоторые думают, что нам нужны новые математические методы, которые соответствуют нуждам биологии и не известны физике. Однако, рассматривая специфику биологических систем, мы должны говорить об их алгоритмичности, а не об их математичности. В качестве примеров алгоритмического подхода к биологическим системам можно указать на так называемые индивидуальные модели (individual-based models), которые в экологии употребляются для описания динамики популяций, или на фрактальные модели, описывающие геометрическую структуру растений.
Ключевые слова: математизация физики, математизация биологии, алгоритмичность биологии, индивидуальные модели, фрактальные модели.Mathematicity of physics is surprising, but it enables us to understand the laws of nature through the analysis of mathematical structures describing it. This concerns, however, only physics. The degree of the mathematization of biology is low, and attempts to mathematize it are limited to the application of mathematical methods used for the description of physical systems. When doing so, we are likely to commit an error of attributing to biological systems features that they do not have. Some argue that biology does need new mathematical methods conforming to its needs, and not known from physics. However, because of a specific complexity of biological systems, we should speak of their algorithmicity, rather than of their mathematicity. As an example of algorithmic approach one can indicate so called individual-based models used in ecology to describe population dynamics or fractal models applied to describe geometrical complexity of such biological structures as trees.
-
Популяционные волны и их бифуркации в модели «активный хищник – пассивная жертва»
Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 831-843В работе изучаются пространственно-временные режимы, реализующиеся в системе типа «хищник– жертва». Предполагается, что хищники перемещаются направленно и случайно, а жертвы распространяются только диффузионно. Демографические процессы в популяции хищников не учитываются, их общая численность постоянна и является параметром. Переменные модели — плотности популяций хищников и жертв, скорость хищников — связаны между собой системой трех уравнений типа «реакция – диффузия – адвекция». Система рассматривается на кольцевом ареале (с периодическими условиями на границах интервала). Исследуются бифуркации волновых режимов при изменении двух параметров — общего количества хищников и их коэффициента таксисного ускорения.
Основным методом исследования является численный анализ. Пространственная аппроксимация задачи в частных производных производится методом конечных разностей. Интегрирование полученной системы обыкновенных дифференциальных уравнений по времени проводится методом Рунге – Кутты. Для анализа динамических режимов используются построение отображения Пуанкаре, расчет показателей Ляпунова и спектр Фурье.
Показано, что популяционные волны в предположениях модели могут возникать в результате направленных перемещений хищников. Динамика в системе качественно меняется при росте их общего количества. При малых значениях устойчив стационарный однородный режим, который сменяется автоколебаниями в виде бегущих волн. Форма волн претерпевает изменения с ростом бифуркационного параметра, ее усложнение происходит за счет увеличения числа временных колебательных мод. Большой коэффициент таксисного ускорения приводит к переходу от многочастотных к хаотическим и гиперхаотическим популяционным волнам. При большом количестве хищников реализуется стационарный режим с отсутствием жертв.
Population waves and their bifurcations in a model “active predator – passive prey”
Computer Research and Modeling, 2020, v. 12, no. 4, pp. 831-843Our purpose is to study the spatio-temporal population wave behavior observed in the predator-prey system. It is assumed that predators move both directionally and randomly, and prey spread only diffusely. The model does not take into account demographic processes in the predator population; it’s total number is constant and is a parameter. The variables of the model are the prey and predator densities and the predator speed, which are connected by a system of three reaction – diffusion – advection equations. The system is considered on an annular range, that is the periodic conditions are set at the boundaries of the interval. We have studied the bifurcations of wave modes arising in the system when two parameters are changed — the total number of predators and their taxis acceleration coefficient.
The main research method is a numerical analysis. The spatial approximation of the problem in partial derivatives is performed by the finite difference method. Integration of the obtained system of ordinary differential equations in time is carried out by the Runge –Kutta method. The construction of the Poincare map, calculation of Lyapunov exponents, and Fourier analysis are used for a qualitative analysis of dynamic regimes.
It is shown that, population waves can arise as a result of existence of directional movement of predators. The population dynamics in the system changes qualitatively as the total predator number increases. А stationary homogeneous regime is stable at low value of parameter, then it is replaced by self-oscillations in the form of traveling waves. The waveform becomes more complicated as the bifurcation parameter increases; its complexity occurs due to an increase in the number of temporal vibrational modes. A large taxis acceleration coefficient leads to the possibility of a transition from multi-frequency to chaotic and hyperchaotic population waves. A stationary regime without preys becomes stable with a large number of predators.
-
Исследование усредненной модели окислительной регенерации закоксованного катализатора
Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.
Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.
В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.
В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.
В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.
Ключевые слова: окислительная регенерация катализатора, химическая кинетика, нелинейные системы обыкновенных дифференциальных уравнений, численный метод Кутты–Мерсона.
Investigation of the averaged model of coked catalyst oxidative regeneration
Computer Research and Modeling, 2021, v. 13, no. 1, pp. 149-161The article is devoted to the construction and investigation of an averaged mathematical model of an aluminum-cobalt-molybdenum hydrocracking catalyst oxidative regeneration. The oxidative regeneration is an effective means of restoring the activity of the catalyst when its granules are coating with coke scurf.
The mathematical model of this process is a nonlinear system of ordinary differential equations, which includes kinetic equations for reagents’ concentrations and equations for changes in the temperature of the catalyst granule and the reaction mixture as a result of isothermal reactions and heat transfer between the gas and the catalyst layer. Due to the heterogeneity of the oxidative regeneration process, some of the equations differ from the standard kinetic ones and are based on empirical data. The article discusses the scheme of chemical interaction in the regeneration process, which the material balance equations are compiled on the basis of. It reflects the direct interaction of coke and oxygen, taking into account the degree of coverage of the coke granule with carbon-hydrogen and carbon-oxygen complexes, the release of carbon monoxide and carbon dioxide during combustion, as well as the release of oxygen and hydrogen inside the catalyst granule. The change of the radius and, consequently, the surface area of coke pellets is taken into account. The adequacy of the developed averaged model is confirmed by an analysis of the dynamics of the concentrations of substances and temperature.
The article presents a numerical experiment for a mathematical model of oxidative regeneration of an aluminum-cobalt-molybdenum hydrocracking catalyst. The experiment was carried out using the Kutta–Merson method. This method belongs to the methods of the Runge–Kutta family, but is designed to solve stiff systems of ordinary differential equations. The results of a computational experiment are visualized.
The paper presents the dynamics of the concentrations of substances involved in the oxidative regeneration process. A conclusion on the adequacy of the constructed mathematical model is drawn on the basis of the correspondence of the obtained results to physicochemical laws. The heating of the catalyst granule and the release of carbon monoxide with a change in the radius of the granule for various degrees of initial coking are analyzed. There are a description of the results.
In conclusion, the main results and examples of problems which can be solved using the developed mathematical model are noted.
-
Исследование моделей турбулентности для расчета сильно закрученного потока в резко расширяющемся канале
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 793-805В настоящей работе проводится сравнение принципиально различных моделей турбулентности для расчета сильно закрученного потока в резко расширяющейся трубе. Данная задача имеет большое значе- ние не только в практике, но и в теоретическом плане, потому что в таком течении возникает очень сложная анизотропная турбулентность с зонами рециркуляции и изучение протекающих процессов позволяет найти ответ на многие вопросы по турбулентности. Рассматриваемое течение хорошо изучено экспериментально. Поэтому она является очень сложной и интересной тестовой задачей для моделей турбулентности. В работе сравниваются численные результаты однопараметрической модели νt-92, метода рейнольдсовых напряжений SSG/LRR-RSM-w2012 и новой двухжидкостной модели. Эти модели очень сильно отличаются между собой, потому что в однопараметрической модели νt-92 используется гипотеза Буссинеска, в модели SSG/LRR-RSM-w2012 для каждого напряжения записывается свое уравнение, а для новой двухжидкостной модели основой является совершенно иной подход к турбулентности. Особенностью подхода к турбулентности для новой двухжидкостной модели заключается в том, что он позволяет получить замкнутую систему уравнений. Сравнение этих моделей проводится не только по соответствию их результатов экспериментальным данным, но и по вычислительным ресурсам, расходуе- мым на численные реализации этих моделей. Поэтому в работе для всех моделей использована одинаковая методика для численного расчета турбулентного закрученного потока при числе Рейнольдса $Re = 3 \cdot 10^4$ и параметре закрутки $S_w=0.6$. В работе показано, что новая двухжидкостная модель является эффективной для исследования турбулентных течений, так как имеет хорошую точность в описании сложных анизотропных турбулентных потоков и достаточно проста для численной реализации.
Ключевые слова: закрученные потоки, осредненные по Рейнольдсу уравнения Навье–Стокса, модель SSG/LRR-RSM-w2012, модель νt-92, новая двухжидкостная модель, прогонка, SIMPLE.
Study of turbulence models for calculating a strongly swirling flow in an abrupt expanding channel
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 793-805In this paper, compared fundamentally different turbulence models for calculating a strongly swirling flow in an abrupt expanding pipe. This task is not only of great importance in practice, but also in theoretical terms. Because in such a flow a very complex anisotropic turbulence with recirculation zones arises and the study of the ongoing processes allows us to find an answer to many questions about turbulence. The flow under consideration has been well studied experimentally. Therefore, it is a very complex and interesting test problem for turbulence models. In the paper compared the numerical results of the one-parameter vt-92 model, the SSG/LRR-RSMw2012 Reynolds stress method and the new two-fluid model. These models are very different from each other. Because the Boussinesq hypothesis is used in the one-parameter vt-92 model, in the SSG/LRR-RSM-w2012 model, its own equation is written for each stress, and for the new two-fluid model, the basis is a completely different approach to turbulence. A feature of the approach to turbulence for the new two-fluid model is that it allows one to obtain a closed system of equations. Comparison of these models is carried out not only by the correspondence of their results with experimental data, but also by the computational resources expended on the numerical implementation of these models. Therefore, in this work, for all models, the same technique was used to numerically calculate the turbulent swirling flow at the Reynolds number $Re=3\cdot 10^4$ and the swirl parameter $S_w=0.6$. In the paper showed that the new two-fluid model is effective for the study of turbulent flows, because has good accuracy in describing complex anisotropic turbulent flows and is simple enough for numerical implementation.
-
Technoscape: мультиагентная модель эволюции сети городов, объединенных торгово-производственными связями
Компьютерные исследования и моделирование, 2022, т. 14, № 1, с. 163-178В работе предлагается многоагентная локально-нелокальная модель образования глобальной структуры городов с условным названием Technoscape. Technoscape можно в определенной степени считать также моделью возникновения глобальной экономики. Текущий вариант модели рассматривает очень простые способы поведения и взаимодействия агентов, при этом модель демонстрирует весьма интересные пространственно-временные паттерны.
Под локальностью и нелокальностью понимаются пространственные характеристики способа взаимодействия агентов друг с другом и с географическим пространством, на котором разворачивается эволюция системы. Под агентом понимается условный ремесленник, семья или промышленно-торговая фирма, причем не делается разницы между производством и торговлей. Агенты размещены на ограниченном двумерном пространстве, разбитом на квадратные ячейки, и перемещаются по нему. Модель демонстрирует процессы высокой концентрации агентов в выделенных ячейках, что трактуется как образование Technoscape: мультиагентная модель эволюции «сетигородов». Происходит постоянный процесс как возникновения, так и исчезновения городов. Агенты живут Technoscape: мультиагентная модель эволюции «сетивечно», не мутируют и не эволюционируют, хотя это перспективное направление развития модели.
Система Technoscape демонстрирует качественно новый вид самоорганизации. Частично эта самоорганизация напоминает поведение модели сегрегации по Томасу Шеллингу, однако эволюционные правила Technoscape существенно иные. В модели Шеллинга существуют лавины, но без добавления новых агентов в системе существуют простые равновесия, в то время как в Technoscape не существует даже строгих равновесий, в лучшем случае квазиравновесные, медленно изменяющиеся состояния.
Нетривиальный результат в модели Technoscape, также контрастирующий с моделью сегрегации Шеллинга, состоит в том, что агенты проявляют склонность к концентрации в больших городах даже при полном игнорировании локальных связей.
При этом, хотя агенты и стремятся в большие города, размер города не является гарантией стабильности. По ходу эволюции системы происходит постоянное Technoscape: мультиагентная модель эволюции «сетипереманивание» жителей в другие города такого же класса.
Ключевые слова: многоагентные системы, самоорганизация, сложные системы, экономическая география, формирование городов, глобальная экономика, экономика высоких технологий.
Technoscape: multi-agent model for evolution of network of cities, joined by production and trade links
Computer Research and Modeling, 2022, v. 14, no. 1, pp. 163-178The paper presents agent-based model for city formation named Technoscape which is both local and nonlocal. Technoscape can, to a certain degree, be also assumed as a model for emergence of global economy. The current version of the model implements very simple way of agents’ behavior and interaction, still the model provides rather interesting spatio-temporal patterns.
Locality and non-locality mean here the spatial features of the way the agents interact with each other and with geographical space upon which the evolution takes place. Technoscape agent is some conventional artisan, family, or а producing and trading firm, while there is no difference between production and trade. Agents are located upon and move through bounded two-dimensional space divided into square cells. The model demonstrates processes of agents’ concentration in a small set of cells, which is interpreted as «city» formation. Agents are immortal, they don’t mutate and evolve, though this is interesting perspective for the evolution of the model itself.
Technoscape provides some distinctively new type of self-organization. Partially, this type of selforganization resembles the behavior of segregation model by Thomas Shelling, still that model has evolution rules substantially different from Technoscape. In Shelling model there exist avalanches still simple equilibria exist if no new agents are added to the game board, while in Technoscape no such equilibria exist. At best, we can observe quasi-equilibrium, slowly changing global states.
One non-trivial phenomenon Technoscape exhibits, which also contrasts to Shelling segregation model, is the ability of agents to concentrate in local cells (interpreted as cities) even explicitly and totally ignoring local interactions, using non-local interactions only.
At the same time, while the agents tend to concentrate in large one-cell cities, large scale of such cities does not guarantee them from decay: there always exists a process of «enticement» of agents and their flow to new cities.
-
Тензорные методы для сильно выпуклых сильно вогнутых седловых задач и сильно монотонных вариационных неравенств
Компьютерные исследования и моделирование, 2022, т. 14, № 2, с. 357-376В данной статье предлагаются методы оптимизации высокого порядка (тензорные методы) для решения двух типов седловых задач. Первый тип — это классическая мин-макс-постановка для поиска седловой точки функционала. Второй тип — это поиск стационарной точки функционала седловой задачи путем минимизации нормы градиента этого функционала. Очевидно, что стационарная точка не всегда совпадает с точкой оптимума функции. Однако необходимость в решении подобного типа задач может возникать в случае, если присутствуют линейные ограничения. В данном случае из решения задачи поиска стационарной точки двойственного функционала можно восстановить решение задачи поиска оптимума прямого функционала. В обоих типах задач какие-либо ограничения на область определения целевого функционала отсутствуют. Также мы предполагаем, что целевой функционал является $\mu$-сильно выпуклыми $\mu$-сильно вогнутым, а также что выполняется условие Липшица для его $p$-й производной.
Для задач типа «мин-макс» мы предлагаем два алгоритма. Так как мы рассматриваем сильно выпуклую и сильно вогнутую задачу, первый алгоритмиспо льзует существующий тензорный метод для решения выпуклых вогнутых седловых задач и ускоряет его с помощью техники рестартов. Таким образом удается добиться линейной скорости сходимости. Используя дополнительные предположения о выполнении условий Липшица для первой и второй производных целевого функционала, можно дополнительно ускорить полученный метод. Для этого можно «переключиться» на другой существующий метод для решения подобных задач в зоне его квадратичной локальной сходимости. Так мы получаем второй алгоритм, обладающий глобальной линейной сходимостью и локальной квадратичной сходимостью. Наконец, для решения задач второго типа существует определенная методология для тензорных методов в выпуклой оптимизации. Суть ее заключается в применении специальной «обертки» вокруг оптимального метода высокого порядка. Причем для этого условие сильной выпуклости не является необходимым. Достаточно лишь правильным образом регуляризовать целевой функционал, сделав его таким образом сильно выпуклым и сильно вогнутым. В нашей работе мы переносим эту методологию на выпукло-вогнутые функционалы и используем данную «обертку» на предлагаемом выше алгоритме с глобальной линейной сходимостью и локальной квадратичной сходимостью. Так как седловая задача является частным случаем монотонного вариационного неравенства, предлагаемые методы также подойдут для поиска решения сильно монотонных вариационных неравенств.
Ключевые слова: вариационное неравенство, седловая задача, гладкость высокого порядка, тензорные методы, минимизация нормы градиента.
Tensor methods for strongly convex strongly concave saddle point problems and strongly monotone variational inequalities
Computer Research and Modeling, 2022, v. 14, no. 2, pp. 357-376In this paper we propose high-order (tensor) methods for two types of saddle point problems. Firstly, we consider the classic min-max saddle point problem. Secondly, we consider the search for a stationary point of the saddle point problem objective by its gradient norm minimization. Obviously, the stationary point does not always coincide with the optimal point. However, if we have a linear optimization problem with linear constraints, the algorithm for gradient norm minimization becomes useful. In this case we can reconstruct the solution of the optimization problem of a primal function from the solution of gradient norm minimization of dual function. In this paper we consider both types of problems with no constraints. Additionally, we assume that the objective function is $\mu$-strongly convex by the first argument, $\mu$-strongly concave by the second argument, and that the $p$-th derivative of the objective is Lipschitz-continous.
For min-max problems we propose two algorithms. Since we consider strongly convex a strongly concave problem, the first algorithm uses the existing tensor method for regular convex concave saddle point problems and accelerates it with the restarts technique. The complexity of such an algorithm is linear. If we additionally assume that our objective is first and second order Lipschitz, we can improve its performance even more. To do this, we can switch to another existing algorithm in its area of quadratic convergence. Thus, we get the second algorithm, which has a global linear convergence rate and a local quadratic convergence rate.
Finally, in convex optimization there exists a special methodology to solve gradient norm minimization problems by tensor methods. Its main idea is to use existing (near-)optimal algorithms inside a special framework. I want to emphasize that inside this framework we do not necessarily need the assumptions of strong convexity, because we can regularize the convex objective in a special way to make it strongly convex. In our article we transfer this framework on convex-concave objective functions and use it with our aforementioned algorithm with a global linear convergence and a local quadratic convergence rate.
Since the saddle point problem is a particular case of the monotone variation inequality problem, the proposed methods will also work in solving strongly monotone variational inequality problems.
-
Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.
Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.
Ключевые слова: стохастическая оптимизация, выпуклая оптимизация, выпукло-вогнутая оптимизация, острый минимум, условие квадратичного роста.
Comparsion of stochastic approximation and sample average approximation for saddle point problem with bilinear coupling term
Computer Research and Modeling, 2023, v. 15, no. 2, pp. 381-391Stochastic optimization is a current area of research due to significant advances in machine learning and their applications to everyday problems. In this paper, we consider two fundamentally different methods for solving the problem of stochastic optimization — online and offline algorithms. The corresponding algorithms have their qualitative advantages over each other. So, for offline algorithms, it is required to solve an auxiliary problem with high accuracy. However, this can be done in a distributed manner, and this opens up fundamental possibilities such as, for example, the construction of a dual problem. Despite this, both online and offline algorithms pursue a common goal — solving the stochastic optimization problem with a given accuracy. This is reflected in the comparison of the computational complexity of the described algorithms, which is demonstrated in this paper.
The comparison of the described methods is carried out for two types of stochastic problems — convex optimization and saddles. For problems of stochastic convex optimization, the existing solutions make it possible to compare online and offline algorithms in some detail. In particular, for strongly convex problems, the computational complexity of the algorithms is the same, and the condition of strong convexity can be weakened to the condition of $\gamma$-growth of the objective function. From this point of view, saddle point problems are much less studied. Nevertheless, existing solutions allow us to outline the main directions of research. Thus, significant progress has been made for bilinear saddle point problems using online algorithms. Offline algorithms are represented by just one study. In this paper, this example demonstrates the similarity of both algorithms with convex optimization. The issue of the accuracy of solving the auxiliary problem for saddles was also worked out. On the other hand, the saddle point problem of stochastic optimization generalizes the convex one, that is, it is its logical continuation. This is manifested in the fact that existing results from convex optimization can be transferred to saddles. In this paper, such a transfer is carried out for the results of the online algorithm in the convex case, when the objective function satisfies the $\gamma$-growth condition.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"