Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Численное моделирование и параллельные вычисления процессов тепломассопереноса при физико-химических воздействиях на неоднородный нефтяной пласт, вскрытый системой скважин
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 319-328В статье представлены математические и численные модели взаимосвязанных термо- и гидродинамических процессов эксплуатационного режима разработки единого нефтедобывающего комплекса при гидрогелевом заводнении неоднородного нефтяного пласта, вскрытого системой произвольно расположенных нагнетательных скважин и добывающих скважин, оснащенных погружными многоступенчатыми электроцентробежными насосами. Особенностью нашего подхода является моделирование работы специального наземного оборудования (станции управления погружными насосами и штуцерной камеры на устье добывающих скважин), предназначенного для регулирования режимов работы как всего комплекса в целом, так и его отдельных элементов.
Полная дифференциальная модель включает в себя уравнения, описывающие нестационарную двухфазную пятикомпонентную фильтрацию в пласте, квазистационарные процессы тепло- и массопереноса в трубах скважин и рабочих каналах погружных насосов. Специальные нелинейные граничные условия моделируют, соответственно, влияние диаметра дросселя на расход и давление на устье каждой добывающей скважины, а также частоты электрического тока на эксплуатационные характеристики погружного насосного узла. Разработка нефтяных месторождений также регулируется посредством изменения забойного давления каждой нагнетательной скважины, концентраций закачиваемых в нее гелеобразующих компонентов, их общих объемов и продолжительности закачки. Задача решается численно с использованием консервативных разностных схем, построенных на основе метода конечных разностей. Разработанные итерационные алгоритмы ориентированы на использование современных параллельных вычислительных технологий. Численная модель реализована в программном комплексе, который можно рассматривать как «интеллектуальную систему скважин» для виртуального управления разработкой нефтяных месторождений.
Ключевые слова: компьютерное моделирование, численные методы, параллельные алгоритмы, программные комплексы, многофазные потоки, добывающие и нагнетательные скважины, электроцентробежные насосы, неоднородный нефтяной пласт, гидрогелевое заводнение.
Numerical modeling and parallel computations of heat and mass transfer during physical and chemical actions on the non-uniform oil reservoir developing by system of wells
Computer Research and Modeling, 2020, v. 12, no. 2, pp. 319-328The paper provides the mathematical and numerical models of the interrelated thermo- and hydrodynamic processes in the operational mode of development the unified oil-producing complex during the hydrogel flooding of the non-uniform oil reservoir exploited with a system of arbitrarily located injecting wells and producing wells equipped with submersible multistage electrical centrifugal pumps. A special feature of our approach is the modeling of the special ground-based equipment operation (control stations of submersible pumps, drossel devices on the head of producing wells), designed to regulate the operation modes of both the whole complex and its individual elements.
The complete differential model includes equations governing non-stationary two-phase five-component filtration in the reservoir, quasi-stationary heat and mass transfer in the wells and working channels of pumps. Special non-linear boundary conditions and dependencies simulate, respectively, the influence of the drossel diameter on the flow rate and pressure at the wellhead of each producing well and the frequency electric current on the performance characteristics of the submersible pump unit. Oil field development is also regulated by the change in bottom-hole pressure of each injection well, concentration of the gel-forming components pumping into the reservoir, their total volume and duration of injection. The problem is solved numerically using conservative difference schemes constructed on the base of the finite difference method, and developed iterative algorithms oriented on the parallel computing technologies. Numerical model is implemented in a software package which can be considered as the «Intellectual System of Wells» for the virtual control the oil field development.
-
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы.
Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.
The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.
-
Модифицированный метод Гаусса–Ньютона для решения гладкой системы нелинейных уравнений
Компьютерные исследования и моделирование, 2021, т. 13, № 4, с. 697-723В работе предлагается новая версия метода Гаусса–Ньютона для решения системы нелинейных уравнений, основанная на идеях использования верхней оценки нормы невязки системы уравнений и квадратичной регуляризации. Предложенная версия метода Гаусса–Ньютона на практике фактически задает целое параметризованное семейство методов решения систем нелинейных уравнений и задач восстановления регрессионной зависимости. Разработанное семейство методов Гаусса–Ньютона состоит целиком из итеративных методов, включающих в себя также специальные формы алгоритмов Левенберга–Марквардта, с обобщением на случаи применения в неевклидовых нормированных пространствах. В разработанных методах используется локальная модель, осуществляющая параметризованное проксимальное отображение и допускающая на практике применение неточного оракула в формате «черного ящика» с ограничением на точность вычисления и на сложность вычисления. Для разработанного семейства методов приведен анализ эффективности в терминах количества итераций алгоритма, точности и сложности представления локальной модели и вычисления оракула, параметров размерности решаемой задачи с выводом локальной и глобальной сходимости при использовании произвольного оракула. В работе представлены условия глобальной сублинейной сходимости для предложенного семейства методов решения системы нелинейных уравнений, состоящих из гладких по Липшицу функций. В рамках дополнительных естественных предположений о невырожденности системы нелинейных функций установлена локальная суперлинейная сходимость для рассмотренного семейства методов. При выполнении условия Поляка–Лоясиевича для системы нелинейных уравнений доказана локальная и глобальная линейная сходимость рассмотренных методов Гаусса–Ньютона. Помимо теоретического обоснования методов, в работе рассматриваются вопросы их практической реализации. В частности, в проведенных экспериментах для точного оракула приводятся схемы эффективного вычисления в зависимости от параметров размерности решаемой задачи. Предложенное семейство методов объединяет в себе несколько существующих и часто используемых на практике модификаций метода Гаусса–Ньютона, позволяя получить гибкий и удобный в использовании метод, реализуемый на практике с помощью стандартных техник выпуклой оптимизации и вычислительной линейной алгебры.
Ключевые слова: системы нелинейных уравнений, нелинейная регрессия, метод Гаусса–Ньютона, алгоритм Левенберга–Марквардта, методы доверительной области, невыпуклая оптимизация, неточное проксимальное отображение, неточный оракул, условие Поляка–Лоясиевича, оценка сложности.
Modified Gauss–Newton method for solving a smooth system of nonlinear equations
Computer Research and Modeling, 2021, v. 13, no. 4, pp. 697-723In this paper, we introduce a new version of Gauss–Newton method for solving a system of nonlinear equations based on ideas of the residual upper bound for a system of nonlinear equations and a quadratic regularization term. The introduced Gauss–Newton method in practice virtually forms the whole parameterized family of the methods solving systems of nonlinear equations and regression problems. The developed family of Gauss–Newton methods completely consists of iterative methods with generalization for cases of non-euclidean normed spaces, including special forms of Levenberg–Marquardt algorithms. The developed methods use the local model based on a parameterized proximal mapping allowing us to use an inexact oracle of «black–box» form with restrictions for the computational precision and computational complexity. We perform an efficiency analysis including global and local convergence for the developed family of methods with an arbitrary oracle in terms of iteration complexity, precision and complexity of both local model and oracle, problem dimensionality. We present global sublinear convergence rates for methods of the proposed family for solving a system of nonlinear equations, consisting of Lipschitz smooth functions. We prove local superlinear convergence under extra natural non-degeneracy assumptions for system of nonlinear functions. We prove both local and global linear convergence for a system of nonlinear equations under Polyak–Lojasiewicz condition for proposed Gauss– Newton methods. Besides theoretical justifications of methods we also consider practical implementation issues. In particular, for conducted experiments we present effective computational schemes for the exact oracle regarding to the dimensionality of a problem. The proposed family of methods unites several existing and frequent in practice Gauss–Newton method modifications, allowing us to construct a flexible and convenient method implementable using standard convex optimization and computational linear algebra techniques.
-
Оптимизация планирования выполнения пакетов заданий в многостадийных системах при ограничениях и формировании комплектов
Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 917-946Современные методы комплексного планирования выполнения пакетов заданий в многостадийных системах характеризуются наличием ограничений на размерность решаемой задачи, невозможностью гарантированного получения эффективных решений при различных значениях ее входных параметров, а также невозможностью учета условия формирования комплектов из результатов и ограничения на длительности интервалов времени функционирования системы. Для решения задачи планирования выполнения пакетов заданий при формировании комплектов результатов и ограничении на длительности интервалов времени функционирования системы реализована декомпозиция обобщенной функции системы на совокупность иерархически взаимосвязанных подфункций. Применение декомпозиции позволило использовать иерархический подход для планирования выполнения пакетов заданий в многостадийных системах, предусматривающий определение решений по составам пакетов заданий на первом уровне иерархии, решений по составам групп пакетов заданий, выполняемых в течение временных интервалов ограниченной длительности, на втором уровне и расписаний выполнения пакетов на третьем уровне иерархии. С целью оценки оптимальности решений по составам пакетов результаты их выполнения, полученные в течение заданных временных интервалов, распределяются по комплектам. Для определения комплексных решений применен аппарат теории иерархических игр. Построена модель иерархической игры для принятия решений по составам пакетов, групп пакетов и расписаниям выполнения пакетов, представляющая собой систему иерархически взаимосвязанных критериев оптимизации решений. В модели учтены условие формирования комплектов из результатов выполнения пакетов заданий и ограничение на длительность интервалов времени ее функционирования. Задача определения составов пакетов заданий и групп пакетов заданий является NP-трудной, поэтому для ее решения требуется применение приближенных методов оптимизации. С целью оптимизации групп пакетов заданий реализовано построение метода формирования начальных решений по их составам, которые в дальнейшем оптимизируются. Также сформулирован алгоритм распределения по комплектам результатов выполнения пакетов заданий, полученных в течение временных интервалов ограниченной длительности. Предложен метод локальной оптимизации решений по составам групп пакетов, в соответствии с которым из групп исключаются пакеты, результаты выполнения которых не входят в комплекты, и добавляются пакеты, не включенные ни в одну из групп. Выполнена программная реализация рассмотренного метода комплексной оптимизации составов пакетов заданий, групп пакетов заданий и расписаний выполнения пакетов заданий из групп (в том числе реализация метода оптимизации составов групп пакетов заданий). С ее использованием проведены исследования особенностей рассматриваемой задачи планирования. Сформулированы выводы, касающиеся зависимости эффективности планирования выполнения пакетов заданий в многостадийных системах при введенных условиях от входных параметров задачи. Использование метода локальной оптимизации составов групп пакетов заданий позволяет в среднем на 60% увеличить количество формируемых комплектов из результатов выполнения заданий в пакетах из групп по сравнению с фиксированными группами (не предполагающими оптимизацию).
Ключевые слова: пакеты заданий, многостадийная система, комплекты результатов, расписание, ограничение длительности временных интервалов работы системы.
Optimization of task package execution planning in multi-stage systems under restrictions and the formation of sets
Computer Research and Modeling, 2021, v. 13, no. 5, pp. 917-946Modern methods of complex planning the execution of task packages in multistage systems are characterized by the presence of restrictions on the dimension of the problem being solved, the impossibility of guaranteed obtaining effective solutions for various values of its input parameters, as well as the impossibility of registration the conditions for the formation of sets from the result and the restriction on the interval duration of time of the system operating. The decomposition of the generalized function of the system into a set of hierarchically interconnected subfunctions is implemented to solve the problem of scheduling the execution of task packages with generating sets of results and the restriction on the interval duration of time for the functioning of the system. The use of decomposition made it possible to employ the hierarchical approach for planning the execution of task packages in multistage systems, which provides the determination of decisions by the composition of task groups at the first level of the hierarchy decisions by the composition of task packages groups executed during time intervals of limited duration at the second level and schedules for executing packages at the third level the hierarchy. In order to evaluate decisions on the composition of packages, the results of their execution, obtained during the specified time intervals, are distributed among the packages. The apparatus of the theory of hierarchical games is used to determine complex solutions. A model of a hierarchical game for making decisions by the compositions of packages, groups of packages and schedules of executing packages is built, which is a system of hierarchically interconnected criteria for optimizing decisions. The model registers the condition for the formation of sets from the results of the execution of task packages and restriction on duration of time intervals of its operating. The problem of determining the compositions of task packages and groups of task packages is NP-hard; therefore, its solution requires the use of approximate optimization methods. In order to optimize groups of task packages, the construction of a method for formulating initial solutions by their compositions has been implemented, which are further optimized. Moreover, a algorithm for distributing the results of executing task packages obtained during time intervals of limited duration by sets is formulated. The method of local solutions optimization by composition of packages groups, in accordance with which packages are excluded from groups, the results of which are not included in sets, and packages, that aren’t included in any group, is proposed. The software implementation of the considered method of complex optimization of the compositions of task packages, groups of task packages, and schedules for executing task packages from groups (including the implementation of the method for optimizing the compositions of groups of task packages) has been performed. With its use, studies of the features of the considered planning task are carried out. Conclusion are formulated concerning the dependence of the efficiency of scheduling the execution of task packages in multistage system under the introduced conditions from the input parameters of the problem. The use of the method of local optimization of the compositions of groups of task packages allows to increase the number of formed sets from the results of task execution in packages from groups by 60% in comparison with fixed groups (which do not imply optimization).
-
Численное моделирование течения в двухмерном плоском диффузоре на основе двухжидкостной модели турбулентности
Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1149-1160В статье представлены результаты численного исследования структуры течения в двухмерном плоском диффузоре. Особенностью диффузоров является то, что в них наблюдается сложное анизотропное турбулентное течение, которое возникает за счет рециркуляционных потоков. Турбулентные модели RANS, в основе которых лежит гипотеза Буссинеска, не способны описывать с достаточной точностью течение в диффузорах. Потому что гипотеза Буссинеска основана на изотропной турбулентности. Поэтому для расчета анизотропных турбулентных течений привлекаются модели, в которых не используется данная гипотеза. Одним из таких направлений в моделировании турбулентности являются методы рейнольдсовых напряжений. Эти методы сложны и требуют довольно больших вычислительных ресурсов. В работе для исследования течения в плоском диффузоре использована сравнительно недавно разработанная двухжидкостная модель турбулентности. Данная модель разработана на основе двухжидкостного подхода к проблеме турбулентности. В отличие от подхода Рейнольдса двухжидкостный подход позволяет получить замкнутую систему уравнений турбулентности с использованием динамики двух жидкостей. Следовательно, если в RANS-моделях для замыкания используются эмпирические уравнения, то в двухжидкостной модели используемые уравненияя вляются точными уравнениями динамики. Одно из главных преимуществ двухжидкостной модели заключаетсяв том, что она способна описывать сложные анизотропные турбулентные течения. В работе полученные численные результаты для профилей продольной скорости, турбулентных напряжений в различных сечениях канала, а также коэффициента трениясравнив аются с известными экспериментальными данными. Для демонстрации достоинства использованной модели турбулентности представлены и численные результаты метода рейнольдсовых напряжений EARSM. Для численной реализации систем уравнений двухжидкостной модели использована нестационарная система уравнений, решение которой асимптотически приближалось к стационарному решению. Дляэтой цели использована конечно-разностная схема, где вязкостные члены аппроксимировались центральной разностью неявным образом, а для конвективных членов использована явная схема против потока второго порядка точности. Результаты получены для числа Рейнольдса Re = 20 000. Показано, что двухжидкостная модель, несмотря на использование равномерной расчетной сетки без сгущенияо коло стенок, способна давать более точное решение, чем достаточно сложный метод рейнольдсовых напряжений с большим разрешением расчетных сеток.
Ключевые слова: уравнения Навье – Стокса, диффузор, отрывное течение, двухжидкостная модель, метод контрольного объема, турбулентные напряжения.
Numerical simulation of flow in a two-dimensional flat diffuser based on two fluid turbulence models
Computer Research and Modeling, 2021, v. 13, no. 6, pp. 1149-1160The article presents the results of a numerical study of the flow structure in a two-dimensional flat diffuser. A feature of diffusers is that they have a complex anisotropic turbulent flow, which occurs due to recirculation flows. The turbulent RANS models, which are based on the Boussinesq hypothesis, are not able to describe the flow in diffusers with sufficient accuracy. Because the Boussinesq hypothesis is based on isotropic turbulence. Therefore, to calculate anisotropic turbulent flows, models are used that do not use this hypothesis. One of such directions in turbulence modeling is the methods of Reynolds stresses. These methods are complex and require rather large computational resources. In this work, a relatively recently developed two-fluid turbulence model was used to study the flow in a flat diffuser. This model is developed on the basis of a two-fluid approach to the problem of turbulence. In contrast to the Reynolds approach, the two-fluid approach allows one to obtain a closed system of turbulence equations using the dynamics of two fluids. Consequently, if empirical equations are used in RANS models for closure, then in the two-fluid model the equations used are exact equations of dynamics. One of the main advantages of the two-fluid model is that it is capable of describing complex anisotropic turbulent flows. In this work, the obtained numerical results for the profiles of the longitudinal velocity, turbulent stresses in various sections of the channel, as well as the friction coefficient are compared with the known experimental data. To demonstrate the advantages of the used turbulence model, the numerical results of the Reynolds stress method EARSM are also presented. For the numerical implementation of the systems of equations of the two-fluid model, a non-stationary system of equations was used, the solution of which asymptotically approached the stationary solution. For this purpose, a finite-difference scheme was used, where the viscosity terms were approximated by the central difference implicitly, and for the convective terms, an explicit scheme against the flow of the second order of accuracy was used. The results are obtained for the Reynolds number Re = 20 000. It is shown that the two-fluid model, despite the use of a uniform computational grid without thickening near the walls, is capable of giving a more accurate solution than the rather complex Reynolds stress method with a high resolution of computational grids.
-
Моделирование кластерного движения беспилотных транспортных средств в гетерогенном транспортном потоке
Компьютерные исследования и моделирование, 2022, т. 14, № 5, с. 1041-1058Одной из особенностей беспилотных автомобильных транспортных средств является их способность к организованному движению в форме кластеров: последовательности движущихся с единой скоростью транспортных средств. Влияние образования и движения этих кластеров на динамику транспортных потоков представляет большой интерес. В настоящей работе предложена качественная имитационная модель кластерного движения беспилотных транспортных средств в гетерогенной транспортной системе, состоящей из двух типов агентов (транспортных средств): управляемых человеком и беспилотных. В основу описания временной эволюции системы положены правила 184 и 240 для элементарных клеточных автоматов. Управляемые человеком транспортные средства перемещаются по правилу 184 с добавлением случайного торможения, вероятность которого зависит от расстояния до находящегося впереди транспортного средства. Для беспилотных транспортных средств используется комбинация правил, в том числе в зависимости от типа ближайших соседей, в некоторых случаях независимо от расстояния до них, что привносит в модель нелокальное взаимодействие. При этом учтено, что группа последовательно движущихся беспилотных транспортных средств может сформировать организованный кластер. Исследовано влияние соотношения типов транспортных средств в системе на характеристики транспортного потока при свободномд вижении на круговой однополосной и двухполосной дорогах, а также при наличии светофора. Результаты моделирования показали, что эффект образования кластеров имеет существенное влияние при свободномдвиж ении, а наличие светофора снижает положительный эффект приблизительно вдвое. Также исследовано движение кластеров из беспилотных автомобилей на двухполосных дорогах с возможностью перестроения. Показано, что учет при перестроении беспилотными транспортными средствами типов соседних транспортных средств (беспилотное или управляемое человеком) положительно влияет на характеристики транспортного потока.
Ключевые слова: клеточные автоматы, транспортные потоки, беспилотные автомобили, мультиагентные системы, компьютерное моделирование, гетерогенный трафик, интеллектуальные транспортные системы, кластерное движение.
A simulation model of connected automated vehicles platoon dynamics in a heterogeneous traffic flow
Computer Research and Modeling, 2022, v. 14, no. 5, pp. 1041-1058The gradual incorporation of automated vehicles into the global transport networks leads to the need to develop tools to assess the impact of this process on various aspects of traffic. This implies a more organized movement of automated vehicles which can form uniformly moving platoons. The influence of the formation and movement of these platoons on the dynamics of traffic flow is of great interest. The currently most developed traffic flow models are based on the cellular automaton approach. They are mainly developed in the direction of increasing accuracy. This inevitably leads to the complication of models, which in their modern form have significantly moved away from the original philosophy of cellular automata, which implies simplicity and schematicity of models at the level of evolution rules, leading, however, to a complex organized behavior of the system. In the present paper, a simulation model of connected automated vehicles platoon dynamics in a heterogeneous transport system is proposed, consisting of two types of agents (vehicles): human-driven and automated. The description of the temporal evolution of the system is based on modified rules 184 and 240 for elementary cellular automata. Human-driven vehicles move according to rule 184 with the addition of accidental braking, the probability of which depends on the distance to the vehicle in front. For automated vehicles, a combination of rules is used depending on the type of nearest neighbors, regardless of the distance to them, which brings non-local interaction to the model. At the same time, it is considered that a group of sequentially moving connected automated vehicles can form an organized platoon. The influence of the ratio of types of vehicles in the system on the characteristics of the traffic flow during free movement on a circular one-lane and two-lane roads, as well as in the presence of a traffic light, is studied. The simulation results show that the effect of platoon formation is significant for a freeway traffic flow; the presence of a traffic light reduces the positive effect by about half. The movement of platoons of connected automated vehicles on two-lane roads with the possibility of lane changing was also studied. It is shown that considering the types of neighboring vehicles (automated or human-driven) when changing lanes for automated vehicles has a positive effect on the characteristics of the traffic flow.
-
Построение высокопроизводительного вычислительного комплекса для моделирования задач газовой динамики
Компьютерные исследования и моделирование, 2010, т. 2, № 3, с. 309-317Целью исследований является разработка программного комплекса для решения задач газовой динамики в многосвязных областях правильной геометрии на высокопроизводительной вычислительной системе. Сравниваются различные технологии реализации параллельных вычислений. Программный комплекс реализован на многопоточных параллельных системах, использующих для организации расчета как многоядерную архитектуру, так и массивно-параллельную. Проведено сравнение численных результатов на основе программного комплекса с известными решениями модельных задач. Проведено исследование производительности различных вычислительных платформ.
Building a high-performance computing system for simulation of gas dynamics
Computer Research and Modeling, 2010, v. 2, no. 3, pp. 309-317Просмотров за год: 5. Цитирований: 6 (РИНЦ).The aim of research is to develop software system for solving gas dynamic problem in multiply connected integration domains of regular shape by high-performance computing system. Comparison of the various technologies of parallel computing has been done. The program complex is implemented using multithreaded parallel systems to organize both multi-core and massively parallel calculation. The comparison of numerical results with known model problems solutions has been done. Research of performance of different computing platforms has been done.
-
Численное исследование фотовозбужденных поляронных состояний в воде
Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 253-261Разработан метод и комплекс программ для численного моделирования процесса формирования поляронных состояний в конденсированных средах. Проведено численное исследование этого процесса для водной среды при воздействии лазерного облучения в ультрафиолетовом диапазоне. Показано, что в рамках предложенного подхода удается численно воспроизвести экспериментальные данные по формированию гидратированных электронов. Представлена схема численного решения системы нелинейных дифференциальных уравнений в частных производных, описывающих динамическую модельпо лярона. Программная реализация выполнена с использованием технологии параллельного программирования MPI. Обсуждаются численные результаты в сравнении с экспериментальными данными и теоретическими оценками.
Ключевые слова: поляронное состояние, гидратированный (сольватированный) электрон, конечно-разностные схемы, параллельная реализация.
Numerical investigation of photoexcited polaron states in water
Computer Research and Modeling, 2014, v. 6, no. 2, pp. 253-261Цитирований: 1 (РИНЦ).A method and a complex of computer programs are developed for the numerical simulation of the polaron states excitation process in condensed media. A numerical study of the polaron states formation in water under the action of the ultraviolet range laser irradiation is carried out. Our approach allows to reproduce the experimental data of the hydrated electrons formation. A numerical scheme is presented for the solution of the respective system of nonlinear partial differential equations. Parallel implementation is based on the MPI technique. The numerical results are given in comparison with the experimental data and theoretical estimations.
-
Эффекты воздействия электрического поля на химические структуры
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 705-718Волны возбуждения являются прообразом самоорганизующихся динамических структур в неравновесных системах. Они характеризуются своей собственной внутренней динамикой, приводящей к формированию бегущих волн различных типов и форм. Яркие примеры — это вращающиеся спирали и скрученные свитки. Интересная и сложная задача — найти способы управления их поведением, применяя внешние сигналы, влияющие на распространяющиеся волны. В качестве такого воздействия мы используем внешние электрические поля, наложенные на возбудимую реакцию Белоусова–Жаботинского (БЖ). Существенные эффекты влияния полей на волны включают изменение скорости волны, обращение направления распространения, взаимное уничтожение вращающихся в противоположных направлениях спиральных волн и переориентацию нитей скрученных свитков. Эти эффекты могут быть объяснены в численных экспериментах, при этом существенную роль играет отрицательно заряженный ингибиторбромид. Эффекты электрического поля также были исследованы в биологических возбудимых средах, таких как социальные амебы Dictyostelium discoideum. Совсем недавно мы начали исследовать влияние электрического поля на реакцию БЖ, протекающую в водно-масляной микроэмульсии. Удалось наблюдать дрейф сложных структур, а также изменение вязкости и электрической проводимости. Мы обсуждаем предположение, что эта система может выступать в качестве модели для дальнодействующего взаимодействия между нейронами.
Electric field effects in chemical patterns
Computer Research and Modeling, 2014, v. 6, no. 5, pp. 705-718Просмотров за год: 8.Excitation waves are a prototype of self-organized dynamic patterns in non-equilibrium systems. They develop their own intrinsic dynamics resulting in travelling waves of various forms and shapes. Prominent examples are rotating spirals and scroll waves. It is an interesting and challenging task to find ways to control their behavior by applying external signals, upon which these propagating waves react. We apply external electric fields to such waves in the excitable Belousov–Zhabotinsky (BZ) reaction. Remarkable effects include the change of wave speed, reversal of propagation direction, annihilation of counter-rotating spiral waves and reorientation of scroll wave filaments. These effects can be explained in numerical simulations, where the negatively charged inhibitor bromide plays an essential role. Electric field effects have also been investigated in biological excitable media such as the social amoebae Dictyostelium discoideum. Quite recently we have started to investigate electric field effect in the BZ reaction dissolved in an Aerosol OT water-in-oil microemulsion. A drift of complex patterns can be observed, and also the viscosity and electric conductivity change. We discuss the assumption that this system can act as a model for long range communication between neurons.
-
Конвертирование трехмерных компьютерных геометрических моделей для оптимизации параметров моделируемых устройств
Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 81-91Данная работа посвящена применению метода построения и конвертирования трехмерных компьютерных геометрических моделей для оптимизации параметров моделируемых устройств. Метод использован при проектировании сложных технических устройств на примере компонентов системы управления рециркуляцией выхлопных газов автомобиля: электропривода клапана рециркуляции с магнитопроводом и электродвигателем. Трехмерные компьютерные геометрические модели созданы в среде «Компас-3D» и конвертированы в среду Maxwell-2D. В среде Maxwell-2D рассчитаны переходные электромагнитные процессы для последующей оптимизации параметров устройств системы рециркуляции по критерию снижения потерь мощности автомобильного двигателя.
Ключевые слова: компьютерное моделирование, эффективность функционирования, управляющая зависимость.
Converting three-dimensional computer geometric models for optimization of simulated devices’ parameters
Computer Research and Modeling, 2015, v. 7, no. 1, pp. 81-91Просмотров за год: 1. Цитирований: 16 (РИНЦ).This work focuses on the application of a method of construction and conversion of three-dimensional computer models for optimization of geometric parameters of simulated devices. The method is used in design of complex technical devices for control system components of an exhaust gas recirculation vehicle – electric EGR valve with magnetic and electric motor. Three-dimensional geometric computer models were created in KOMPAS-3D environment and converted to Maxwell-2D. In Maxwell-2D environment transient electromagnetic processes for further optimization of parameters of therecirculation system devicewere calculated using a criterion of reducing power loss of the automobile engine.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"