Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Расчетное исследование запаса до всплытия тепловыделяющей сборки быстрого натриевого реактора
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1307-1321В статье приводится описание расчетного исследования гидродинамических процессов, происходящих при течении теплоносителя через тепловыделяющую сборку активной зоны реактора на быстрых нейтронах с натриевым теплоносителем. В рамках исследования разработаны методика и расчетная модель на базе программного комплекса вычислительной гидродинамики FlowVision, которые позволили с помощью обоснованных упрощений получить коэффициент запаса до всплытия тепловыделяющей сборки, а также исследовать гидродинамические характеристики процессов, происходящих при моделировании различных исходных событий, влияющих на движение тепловыделяющей сборки активной зоны реактора.
Для проведения расчетного обоснования разработана эквивалентная по гидравлическим сопротивлениям модель тепловыделяющей сборки, позволяющая не моделировать явным образом сложную натурную конструкцию сборки. Упрощение геометрии сборки позволило уменьшить количество расчетных ячеек в модели и сократить используемые вычислительные ресурсы и время счета.
Выполнение расчетов гидродинамических параметров эквивалентной модели тепловыделяющей сборки в программном комплексе FlowVision проводилось в два этапа. На первом этапе с целью определения минимального коэффициента запаса до всплытия тепловыделяющей сборки и минимального расхода теплоносителя, при котором происходит перемещение сборки, проведены стационарные расчеты, в которых на входе в модель были заданы различные значения расхода и, далее, определены силы, действующие на сборку. На втором этапе проведена серия расчетов динамических режимов. В этих режимах на входе в модель было задано скачкообразное увеличение давления, являющееся исходным событием, которое гипотетически может произойти в реакторной установке на быстрых нейтронах с натриевым теплоносителем, а также определены гидродинамические параметры и силы, действующие на тепловыделяющую сборку.
По результатам первого этапа расчетного исследования подтверждены минимальный коэффициент запаса до всплытия тепловыделяющей сборки реактора на быстрых нейтронах, обоснованный в материалах проекта реакторной установки, а также минимальный расход теплоносителя через сборку, при котором возможно ее перемещение. По итогам второго этапа исследования сделаны выводы о невозможности перемещения тепловыделяющей сборки при исходном событии, связанном со скачкообразным повышением давления в напорной камере реактора.
Ключевые слова: активная зона, реактор с жидкометаллическим теплоносителем, тепловыделяющая сборка, гидродинамика, расчетная модель, FlowVision.
Analytical study of rod lifting margin of fuel assembly of fast sodium reactor
Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1307-1321The paper describes an analytical study of hydrodynamic processes taking place in the course of coolant flow through a fuel assembly of the core of a fast neutron sodium-cooled reactor. Within the framework of the study, a procedure and an analytical model were developed based on program complex FlowVision of computational fluid dynamics, which, using proved simplifications, permits to obtain a coefficient of rod lifting margin of a fuel assembly and to study hydrodynamic characteristics of processes taking place in the course of simulation of different initial events influencing motion of a reactor core fuel assembly.
For analytical justification a fuel assembly model was developed, which is equivalent by hydraulic resistance values and permits not to simulate explicitly a complicated full-scale fuel assembly design, thus, decreasing a number of computational cells in the model and, as a result, reducing computational and time resources.
Hydraulic parameters of the equivalent fuel assembly model in program complex FlowVision were analyzed in two stages. At the first stage, to determine the minimum rod lifting margin coefficient of a fuel assembly, steady-state analyses were performed, where various flowrate values were assigned at the model inlet and forces acting upon the assembly were analyzed. A series of dynamic mode analyses was performed at the second stage. Jump-like pressure increase being the initial event which could occur hypothetically in the fast neutron sodium cooled reactor plant was assigned in these modes. Hydrodynamic parameters and forces acting upon the fuel assembly were determined.
The results of the first stage of the analytical study proved the minimum coefficient of rod lifting margin of a fuel assembly of the fast neutron reactor justified in reactor plant design documentation. As a result of the second stage of the study, conclusions were made on impossibility for the fuel assembly to move at the initial event associated with jump-like pressure increase in the reactor pressure chamber.
Keywords: core, liquid-metal cooled reactor, fuel assembly, hydrodynamics, analytical model, FlowVision. -
Численное исследование взаимодействия ударной волны с подвижными вращающимися телами сложной формы
Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 513-540Статья посвящена разработке вычислительного алгоритма метода декартовых сеток для исследования взаимодействия ударной волны с подвижными телами с кусочно-линейной границей. Интерес к подобным задачам связан с прямым численным моделированием течений двухфазных сред. Эффект формы частицы может иметь значение в задаче о диспергировании пылевого слоя за проходящей ударной волной. Экспериментальные данные по коэффициенту аэродинамического сопротивления несферических частиц практически отсутствуют.
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величины шага, расчет динамики движения тела (определение силы и момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. На каждом шаге интегрирования по времени все ячейки делятся на два класса — внешние (внутри тела или пересекаются его границами) и внутренние (целиком заполнены газом). Решение уравнений Эйлера строится только во внутренних. Основная сложность заключается в расчете численного потока через ребра, общие для внутренних и внешних ячеек, пересекаемых подвижными границами тел. Для расчета этого потока используются двухволновое приближение при решении задачи Римана и схема Стигера–Уорминга. Представлено подробное описание вычислительного алгоритма.
Работоспособность алгоритма продемонстрирована на задаче о подъеме цилиндра с основанием в форме круга, эллипса и прямоугольника за проходящей ударной волной. Тест с круговым цилиндром рассмотрен во множестве статей, посвященных методам погруженной границы. Проведен качественный и количественный анализ траектории движения центра масс цилиндра на основании сравнения с результатами расчетов, представленными в восьми других работах. Для цилиндра с основанием в форме эллипса и прямоугольника получено удовлетворительное согласие по динамике его движения и вращения в сравнении с имеющимися немногочисленными литературными источниками. Для прямоугольника исследована сеточная сходимость результатов. Показано, что относительная погрешность выполнения закона сохранения суммарной массы газа в расчетной области убывает линейно при измельчении расчетной сетки.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, подъем частицы, вращение частицы.
Numerical study of the interaction of a shock wave with moving rotating bodies with a complex shape
Computer Research and Modeling, 2021, v. 13, no. 3, pp. 513-540The work is devoted to the development of a computational algorithm of the Cartesian grid method for studying the interaction of a shock wave with moving bodies with a piecewise linear boundary. The interest in such problems is connected with direct numerical simulation of two-phase media flows. The effect of the particle shape can be important in the problem of dust layer dispersion behind a passing shock wave. Experimental data on the coefficient of aerodynamic drag of non-spherical particles are practically absent.
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. At each time step, all cells are divided into two classes – external (inside the body or intersected by its boundaries) and internal (completely filled with gas). The solution of the Euler equations is constructed only in the internal ones. The main difficulty is the calculation of the numerical flux through the edges common to the internal and external cells intersected by the moving boundaries of the bodies. To calculate this flux, we use a two-wave approximation for solving the Riemann problem and the Steger-Warming scheme. A detailed description of the numerical algorithm is presented.
The efficiency of the algorithm is demonstrated on the problem of lifting a cylinder with a base in the form of a circle, ellipse and rectangle behind a passing shock wave. A circular cylinder test was considered in many papers devoted to the immersed boundary methods development. A qualitative and quantitative analysis of the trajectory of the cylinder center mass is carried out on the basis of comparison with the results of simulations presented in eight other works. For a cylinder with a base in the form of an ellipse and a rectangle, a satisfactory agreement was obtained on the dynamics of its movement and rotation in comparison with the available few literary sources. Grid convergence of the results is investigated for the rectangle. It is shown that the relative error of mass conservation law fulfillment decreases with a linear rate.
-
Численное моделирование течения Колмогорова в вязких средах под действием периодической в пространстве статической силы
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 741-753Основной особенностью двумерного турбулентного течения, постоянно возбуждаемого внешней силой, является возникновение обратного каскада энергии. За счет нелинейных эффектов пространственный масштаб вихрей, создаваемых внешней силой, увеличивается до тех пор, пока рост не будет остановлен размером ячейки. В последнем случае энергия накапливается на этом масштабе. При определенных условиях такое накопление энергии приводит к возникновению системы когерентных вихрей. Наблюдаемые вихри имеют размер ячейки и в среднем изотропны. Численное моделирование является эффективным способом изучения таких процессов. Особый интерес представляет задача исследования турбулентности вязкой жидкости в квадратной ячейке при возбуждении коротковолновой и длинноволновой статическими внешними силами. Численное моделирование проводилось со слабосжимаемой жидкостью в двумерной квадратной ячейке с нулевыми граничными условиями. В работе показано, как на характеристики течения влияет пространственная частота внешней силы, а также величина вязкости самой жидкости. Увеличение пространственной частоты внешней силы приводит к стабилизации и ламинаризации течения. В то же время при увеличении пространственной частоты внешней силы уменьшение вязкости приводит к возобновлению механизма переноса энергии по обратному каскаду за счет смещения области диссипации энергии в область меньших масштабов по сравнению с масштабом накачки.
Numerical modeling of the Kolmogorov flow in a viscous media, forced by the static force periodic in space
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 741-753The main feature of a two-dimensional turbulent flow, constantly excited by an external force, is the appearance of an inverse energy cascade. Due to nonlinear effects, the spatial scale of the vortices created by the external force increases until the growth is stopped by the size of the cell. In the latter case, energy is accumulated at these dimensions. Under certain conditions, accumulation leads to the appearance of a system of coherent vortices. The observed vortices are of the order of the box size and, on average, are isotropic. Numerical simulation is an effective way to study such the processes. Of particular interest is the problem of studying the viscous fluid turbulence in a square cell under excitation by short-wave and long-wave static external forces. Numerical modeling was carried out with a weakly compressible fluid in a two-dimensional square cell with zero boundary conditions. The work shows how the flow characteristics are influenced by the spatial frequency of the external force and the magnitude of the viscosity of the fluid itself. An increase in the spatial frequency of the external force leads to stabilization and laminarization of the flow. At the same time, with an increased spatial frequency of the external force, a decrease in viscosity leads to the resumption of the mechanism of energy transfer along the inverse cascade due to a shift in the energy dissipation region to a region of smaller scales compared to the pump scale.
-
Исследование взаимосвязей размерных и продукционных характеристик фито- и зоопланктона в Вислинском и Куршском заливах Балтийского моря. Часть 1. Статистический анализ данных многолетних наблюдений и разработка структуры математической модели трофической цепи планктона
Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 211-246В данной работе исследованы статистические взаимосвязи между размерными и продукционными характеристиками фито- и зоопланктона, обитающего в водах Вислинского и Куршского заливов Балтийского моря. Исследования фито- и зоопланктона в пределах российских частей акваторий Вислинского и Куршского заливов проводили ежемесячно (с апреля по ноябрь) в рамках программы многолетнего мониторинга состояния экосистем заливов. Размерная структура планктонных организмов — основа понимания развития продукционных процессов, механизмов формирования видового разнообразия планктона и функционирования экосистем заливов. По результатам работы установлено, что максимальная скорость фотосинтеза и величина интегральной первичной продукции меняются по степенному закону с изменением среднего ценотического объема клеток фитопланктона. Полученный результат показывает, что чем меньше размер клеток водорослей в фитопланктонных сообществах, тем активнее в них протекают процессы метаболизма и тем эффективнее усваивается солнечная энергия. Показано, что формирование видового разнообразия планктона в экосистемах заливов самым тесным образом связано и с размерной структурой планктонных сообществ, и с особенностями развития продукционных процессов. Предложена структура пространственно однородной математической модели планктонной трофической цепи для экосистем заливов, учитывающая размерные спектры и характеристики фито- и зоопланктона. Параметры модели — размерно-зависимые показатели, аллометрически связанные со средними объемами клеток и организмов в разных диапазонах их размеров. В модели предложен алгоритм изменения во времени коэффициентов предпочтения в питании зоопланктонных организмов. Разработанная размерно-зависимая математическая модель водных экосистем позволяет учесть воздействие турбулентного обмена на размерную структуру и временную динамику планктонной пищевой цепи Вислинского и Куршского заливов. Модель может быть использована для исследования различных режимов динамического поведения планктонной системы в зависимости от изменений значений ее параметров и внешних воздействий, а также для количественной оценки перераспределения потоков вещества в экосистемах заливов.
Ключевые слова: экосистема, биогенные вещества, фитопланктон, зоопланктон, планктонный детрит, размерная структура, максимальная скорость фотосинтеза, интегральная первичная продукция, продукция зоопланктона, аллометрическое масштабирование, индекс видового разнообразия Шеннона, математическое моделирование, экологическая имитационная модель, турбулентный обмен.
Investigation of the relationships of the size and production characteristics of phyto- and zooplankton in the Vistula and Curonian lagoons of the Baltic Sea. Part 1. The statistical analysis of long-term observation data and development of the structure for the mathematical model of the plankton food chain
Computer Research and Modeling, 2017, v. 9, no. 2, pp. 211-246In the paper the statistical relationships between the size and production characteristics of phytoplankton and zooplankton of the Vistula and Curonian lagoons, the Baltic Sea, were investigated. Research phytoplankton and zooplankton within the Russian part of the area of the Vistula and the Curonian lagoon was carried out on the monthly basis (from April to November) within the framework of long-term monitoring program on evaluating of ecological status of the lagoons. The size structure of plankton is the basis for understanding of the development of production processes, mechanisms of formation of the plankton species diversity and functioning of the lagoon ecosystems. As results of the work it was found that the maximum rate of photosynthesis and the integral value of the primary production with a change in cell volume of phytoplankton are changed according to a power law. The result shows that the smaller the size of algal cells in phytoplankton communities the more actively occur metabolism and the more effective they assimilate the solar energy. It is shown that the formation of plankton species diversity in ecosystems of lagoons is closely linked with the size structure of plankton communities and with features of development of the production processes. It is proposed the structure of a spatially homogenous mathematical model of the plankton food chain for the lagoon ecosystems taking into account the size spectrum and the characteristics of phytoplankton and zooplankton. The model parameters are the sizedependent indicators allometrically linked with average volumes of cells and organisms in different ranges of their sizes. In the model the algorithm for changes over time the coefficients of food preferences in the diet of zooplankton was proposed. Developed the size-dependent mathematical model of aquatic ecosystems allows to consider the impact of turbulent exchange on the size structure and temporal dynamics of the plankton food chain of the Vistula and Curonian lagoons. The model can be used to study the different regimes of dynamic behavior of plankton systems depending on the changes in the values of its parameters and external influences, as well as to quantify the redistribution of matter flows in ecosystems of the lagoons.
Keywords: ecosystem, nutrients, phytoplankton, zooplankton, plankton detritus, size structure, the maximum rate of photosynthesis, integrated primary production, zooplankton production, allometric scaling, Shannon index of species diversity, mathematical modeling, ecological simulation model, turbulent exchange.Просмотров за год: 9. -
Решатель уравнения Больцмана на неструктурированных пространственных сетках
Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.
Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.
Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.
В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.
Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.
Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.
Ключевые слова: уравнение Больцмана, эффект Кнудсена, неструктурированная сетка, микронасос, функция распределения, интеграл столкновений, проекционный метод.
The Solver of Boltzmann equation on unstructured spatial grids
Computer Research and Modeling, 2019, v. 11, no. 3, pp. 427-447Просмотров за год: 13.The purpose of this work is to develop a universal computer program (solver) which solves kinetic Boltzmann equation for simulations of rarefied gas flows in complexly shaped devices. The structure of the solver is described in details. Its efficiency is demonstrated on an example of calculations of a modern many tubes Knudsen pump. The kinetic Boltzmann equation is solved by finite-difference method on discrete grid in spatial and velocity spaces. The differential advection operator is approximated by finite difference method. The calculation of the collision integral is based on the conservative projection method.
In the developed computational program the unstructured spatial mesh is generated using GMSH and may include prisms, tetrahedrons, hexahedrons and pyramids. The mesh is denser in areas of flow with large gradients of gas parameters. A three-dimensional velocity grid consists of cubic cells of equal volume.
A huge amount of calculations requires effective parallelization of the algorithm which is implemented in the program with the use of Message Passing Interface (MPI) technology. An information transfer from one node to another is implemented as a kind of boundary condition. As a result, every MPI node contains the information about only its part of the grid.
The main result of the work is presented in the graph of pressure difference in 2 reservoirs connected by a multitube Knudsen pump from Knudsen number. This characteristic of the Knudsen pump obtained by numerical methods shows the quality of the pump. Distributions of pressure, temperature and gas concentration in a steady state inside the pump and the reservoirs are presented as well.
The correctness of the solver is checked using two special test solutions of more simple boundary problems — test with temperature distribution between 2 planes with different temperatures and test with conservation of total gas mass.
The correctness of the obtained data for multitube Knudsen pump is checked using denser spatial and velocity grids, using more collisions in collision integral per time step.
-
Численное исследование динамики движения тела квадратной формы в сверхзвуковом потоке за ударной волной
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 755-766В ряде фундаментальных и прикладных задач возникает необходимость описания динамики движения частиц сложной формы в высокоскоростном потоке газа. В качестве примера можно привести движение угольных частиц за фронтом сильной ударной волныв о время взрыва в угольной шахте. Статья посвящена численному моделированию динамики поступательного и вращательного движения тела квадратной формык ак модельного примера частицы более сложной, чем круглая, формы, в сверхзвуковом потоке за проходящей ударной волной. Постановка задачи приближенно соответствует натурным экспериментам В. М. Бойко и С. В. Поплавского (ИТПМ СО РАН).
Математическая модель основана на двумерных уравнениях Эйлера, которые решаются в области с подвижными границами. Определяющая система уравнений численно интегрируется по явной схеме с использованием разработанного ранее и верифицированного метода декартовых сеток. Вычислительный алгоритм на шаге интегрирования по времени включает: определение величиныш ага, расчет динамики движения тела (определение силыи момента, действующих на тело; определение линейной и угловой скоростей тела; расчет новых координат тела), расчет параметров газа. Для расчета численного потока через ребра ячеек, пересекаемых границами тела, используется двухволновое приближение при решении задачи Римана и схема Стигера – Уорминга.
Движение квадрата со стороной 6 мм инициировалось прохождением ударной волныс числом Маха 3,0, распространяющейся в плоском канале длиной 800 мм и шириной 60 мм. Канал был заполнен воздухом при пониженном давлении. Рассматривалась различная начальная ориентация квадрата относительно оси канала. Обнаружено, что начальное положение квадрата стороной поперек потока является менее устойчивым при его движении, чем начальное положение диагональю поперек потока. В этом расчетные результаты качественно соответствуют экспериментальным наблюдениям. Для промежуточных начальных положений квадрата описан типичный режим его движения, состоящий из колебаний, близких к гармоническим, переходящих во вращение с постоянной средней угловой скоростью. В процессе движения квадрата наблюдается в среднем монотонное уменьшение расстояния между центром масс и центром давления до нуля.
Ключевые слова: ударная волна, метод декартовых сеток, уравнения Эйлера, сверхзвуковой поток, тело квадратной формы, вращение.
Numerical study of the dynamics of motion of a square body in a supersonic flow behind a shock wave
Computer Research and Modeling, 2022, v. 14, no. 4, pp. 755-766In a number of fundamental and practical problems, it is necessary to describe the dynamics of the motion of complexshaped particles in a high-speed gas flow. An example is the movement of coal particles behind the front of a strong shock wave during an explosion in a coal mine. The paper is devoted to numerical simulation of the dynamics of translational and rotational motion of a square-shaped body, as an example of a particle of a more complex shape than a round one, in a supersonic flow behind a passing shock wave. The formulation of the problem approximately corresponds to the experiments of Professor V. M. Boiko and Professor S. V. Poplavski (ITAM SB RAS).
Mathematical model is based on the two-dimensional Euler equations, which are solved in a region with varying boundaries. The defining system of equations is integrated using an explicit scheme and the Cartesian grid method which was developed and verified earlier. The computational algorithm at the time integration step includes: determining the step value, calculating the dynamics of the body movement (determining the force and moment acting on the body; determining the linear and angular velocities of the body; calculating the new coordinates of the body), calculating the gas parameters. To calculate numerical fluxes through the edges of the cell intersected by the boundaries of the body, we use a two-wave approximation for solving the Riemann problem and the Steger – Warming scheme.
The movement of a square with a side of 6 mm was initiated by the passage of a shock wave with a Mach number of 3,0 propagating in a flat channel 800 mm long and 60 mm wide. The channel was filled with air at low pressure. Different initial orientation of the square relative to the channel axis was considered. It is found that the initial position of the square with its side across the flow is less stable during its movement than the initial position with a diagonal across the flow. In this case, the calculated results qualitatively correspond to experimental observations. For the intermediate initial positions of a square, a typical mode of its motion is described, consisting of oscillations close to harmonic, turning into rotation with a constant average angular velocity. During the movement of the square, there is an average monotonous decrease in the distance between the center of mass and the center of pressure to zero.
Keywords: shock wave, Cartesian grid method, Euler equations, supersonic flow, square body, rotation. -
Усредненная модель двухфазных капиллярно-неравновесных течений в среде с двойной пористостью
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 567-580Построена математическая модель двухфазных капиллярно-неравновесных изотермических течений несжимаемых фаз в среде с двойной пористостью. Рассматривается среда с двойной пористостью, которая представляет собой композицию двух пористых сред с контрастными капиллярными свойствами (абсолютной проницаемостью, капиллярным давлением). Одна из составляющих сред обладает высокой проницаемостью и является проводящей, вторая характеризуется низкой проницаемостью и образует несвязную систему матричных блоков. Особенностью модели является учет влияния капиллярной неравновесности на массообмен между подсистемами двойной пористости, при этом неравновесные свойства двухфазного течения в составляющих средах описываются в линейном приближении в рамках модели Хассанизаде. Усреднение методом формальных асимптотических разложений приводит к системе дифференциальных уравнений в частных производных, коэффициенты которой зависят от внутренних переменных, определяемых из решения ячеечных задач. Численное решение ячеечных задач для системы уравнений в частных производных является вычислительно затратным. Поэтому для внутреннего параметра, характеризующего распределение фаз между подсистемами двойной пористости, формулируется термодинамически согласованное кинетическое уравнение. Построены динамические относительные фазовые проницаемости и капиллярное давление в процессах дренирования и пропитки. Показано, что капиллярная неравновесность течений в составляющих подсистемах оказывает на них сильное влияние. Таким образом, анализ и моделирование этого фактора является важным в задачах переноса в системах с двойной пористостью.
Ключевые слова: двойная пористость, усреднение, двухфазное течение, капиллярная нерав- новесность, динамическое капиллярное давление, динамические относительные фазовые проницаемости.
Homogenized model of two-phase capillary-nonequilibrium flows in a medium with double porosity
Computer Research and Modeling, 2023, v. 15, no. 3, pp. 567-580A mathematical model of two-phase capillary-nonequilibrium isothermal flows of incompressible phases in a double porosity medium is constructed. A double porosity medium is considered, which is a composition of two porous media with contrasting capillary properties (absolute permeability, capillary pressure). One of the constituent media has high permeability and is conductive, the second is characterized by low permeability and forms an disconnected system of matrix blocks. A feature of the model is to take into account the influence of capillary nonequilibrium on mass transfer between subsystems of double porosity, while the nonequilibrium properties of two-phase flow in the constituent media are described in a linear approximation within the Hassanizadeh model. Homogenization by the method of formal asymptotic expansions leads to a system of partial differential equations, the coefficients of which depend on internal variables determined from the solution of cell problems. Numerical solution of cell problems for a system of partial differential equations is computationally expensive. Therefore, a thermodynamically consistent kinetic equation is formulated for the internal parameter characterizing the phase distribution between the subsystems of double porosity. Dynamic relative phase permeability and capillary pressure in the processes of drainage and impregnation are constructed. It is shown that the capillary nonequilibrium of flows in the constituent subsystems has a strong influence on them. Thus, the analysis and modeling of this factor is important in transfer problems in systems with double porosity.
-
Хаотизация течения под действием объемной силы
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.
Ключевые слова: турбулентность, завихренность, энстрофия, палинстрофия, скорость диссипации, схема КАБАРЕ, схема МакКормака, пакет OpenFOAM.
Сhaotic flow evolution arising in a body force field
Computer Research and Modeling, 2024, v. 16, no. 4, pp. 883-912This article presents the results of an analytical and computer study of the chaotic evolution of a regular velocity field generated by a large-scale harmonic forcing. The authors obtained an analytical solution for the flow stream function and its derivative quantities (velocity, vorticity, kinetic energy, enstrophy and palinstrophy). Numerical modeling of the flow evolution was carried out using the OpenFOAM software package based on incompressible model, as well as two inhouse implementations of CABARET and McCormack methods employing nearly incompressible formulation. Calculations were carried out on a sequence of nested meshes with 642, 1282, 2562, 5122, 10242 cells for two characteristic (asymptotic) Reynolds numbers characterizing laminar and turbulent evolution of the flow, respectively. Simulations show that blow-up of the analytical solution takes place in both cases. The energy characteristics of the flow are discussed relying upon the energy curves as well as the dissipation rates. For the fine mesh, this quantity turns out to be several orders of magnitude less than its hydrodynamic (viscous) counterpart. Destruction of the regular flow structure is observed for any of the numerical methods, including at the late stages of laminar evolution, when numerically obtained distributions are close to analytics. It can be assumed that the prerequisite for the development of instability is the error accumulated during the calculation process. This error leads to unevenness in the distribution of vorticity and, as a consequence, to the variance vortex intensity and finally leads to chaotization of the flow. To study the processes of vorticity production, we used two integral vorticity-based quantities — integral enstrophy ($\zeta$) and palinstrophy $(P)$. The formulation of the problem with periodic boundary conditions allows us to establish a simple connection between these quantities. In addition, $\zeta$ can act as a measure of the eddy resolution of the numerical method, and palinstrophy determines the degree of production of small-scale vorticity.
Keywords: turbulence, vorticity, enstrophy, palinstrophy, dissipation rate, CABARET scheme, McCormack scheme, OpenFOAM. -
Математическая модель роста опухоли с учетом дихотомии миграции и пролиферации
Компьютерные исследования и моделирование, 2009, т. 1, № 4, с. 415-422Исследована математическая модель роста инвазивной опухоли, которая учитывает тот факт, что клетка не может одновременно активно мигрировать в ткани и пролиферировать. Переход из одного состояния в другое пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации клетки делятся, при низкой — мигрируют. Была исследована зависимость скорости роста опухоли от параметров модели. Показано, что скорость пороговым образом зависит от уровня кислорода в ткани: при высокой концентрации она практически не меняется, а ниже порогового значения рост опухоли существенно замедляется.
Mathematical model of tumor growth with migration and proliferation dichotomy
Computer Research and Modeling, 2009, v. 1, no. 4, pp. 415-422Mathematical model of infiltrative tumour growth taking into account transitions between two possible states of malignant cell is investigated. These transitions are considered to depend on oxygen level in a threshold manner: high oxygen concentration allows cell proliferation, while concentration below some critical value induces cell migration. Dependence of infiltrative tumour spreading rate on model parameters has been studied. It is demonstrated that if the level of tissue oxygenation is high, tumour spreading rate remains almost constant; otherwise the spreading rate decreases dramatically with oxygen depletion.
Keywords: tumor growth, proliferation and migration dichotomy.Просмотров за год: 3. Цитирований: 13 (РИНЦ). -
Исследование путей распространения потенциала действия у высших растений с использованием модели ФитцХью-Нагумо
Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 77-84Двумерная система электрически связанных возбудимых клеток, описанных моделью ФитцХью-Нагумо, была использована для теоретического анализа механизмов распространения потенциала действия (ПД) в тканях высших растений. Показано, что в системе, состоящей из одинаковых элементов, увеличение электрической проводимости между клетками повышало как скорость распространения, так и порог возбуждения ПД. Для имитации симпласта проводящих пучков растений была использована система, состоящая из элементов со слабой электрической связью, которые описывали паренхимные клетки проводящих пучков, и элементов с сильной электрической связью, которые описывали ситовидные элементы. При этом показано,
что порог возбуждения ПД приближался к порогу системы, состоящей только из элементов со слабой электрической связью, а скорость распространения сигнала была значительно выше, нежели в такой системе.
An investigation of an action potential propagation in vascular plant using FitzHugh-Nagumo model
Computer Research and Modeling, 2011, v. 3, no. 1, pp. 77-84Просмотров за год: 3. Цитирований: 4 (РИНЦ).A two-dimensional system of excitable cells, describing by the FitzHugh-Nagumo model, has been used for a theoretical investigation of an action potential propagation (AP) in vascular plant tissues. It is shown that growth of electrical conductivity between cells increases the AP generation threshold and its propagation velocity in the homogeneous system, which has been formed by equal elements. The plant symplast has been
described by the heterogeneous system, including elements with low electrical conductivity, which simulate parenchyma cells, and elements with high electrical conductivity, which simulate sieve elements. Analysis of this system shows that the threshold of the AP generation is similar with this threshold in the homogeneous system
with low electrical conductivity; the velocity of the AP propagation is faster than one in this system.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"