Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'assembly':
Найдено статей: 16
  1. Грачев В.А., Найштут Ю.С.
    Континуальные трансформирующиеся оболочки из тонких пластин
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 3-29

    Изучаются трансформирующиеся системы, собранные из трапециевидных пластин. При развертывании пакета пластинок образуется сетчатая оболочка с шестигранными ячейками. Доказывается, что при определенных соотношениях размеров граней в шестизвенниках появляются дополнительные внутренние степени свободы. Если же используются тонкие пластинки, то континуальная аппроксимация развернутой сети может интерпретироваться как оболочка с широким набором локальных кривизн. Строится кинематика континуальной модели методом подвижного репера Картана. Изучается механическое поведение континуальных сетей, если цилиндрические шарниры между пластинами выполнены из пластических материалов, обладающих памятью формы. Исследуются переходы оболочек из одной равновесной формы в другую. Показаны возможные практические применения континуальных сетей.

    Grachev V.A., Nayshtut Yu.S.
    Continuum deployable shells made of thin plates
    Computer Research and Modeling, 2011, v. 3, no. 1, pp. 3-29

    This paper covers deployable systems assembled from trapezium plates. When the plate package is unwrapped, a net shell with six loop cells is formed. It is proved that additional degrees of freedom appear in case of certain correlation between the sizes of the six loop faces. When thin plates were used, the continuum approximation of the deployed net could be interpreted as a shell with a wide variety of local curvatures. Kinematics of the continuum model is analyzed by the method of Cartan moving hedron. Mechanical behavior of continuum nets is studied when cylindrical hinges between the plates are completed of shape memory plastic materials. The paper researches into shell transformations from one stable form to the other. Various practical applications of the continuum nets are demonstrated.

    Цитирований: 3 (РИНЦ).
  2. Божко А.Н.
    Моделирование процессов разборки сложных изделий
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 525-537

    Работа посвящена моделированию процессов разборки сложных изделий в системах автоматизированного проектирования. Возможность демонтажа изделия в заданной последовательности формируется на ранних этапах проектирования, а реализуется в конце жизненного цикла. Поэтому современные системы автоматизированного проектирования должны иметь инструменты для оценки сложности демонтажа деталей и сборочных единиц. Предложена гиперграфовая модель механической структуры изделия. Показано, что математическим описанием когерентных и секвенциальных операций разборки является нормальное разрезание ребра гиперграфа. Доказана теорема о свойствах нормальных разрезаний. Данная теорема позволяет организовать простую рекурсивную процедуру генерации всех разрезаний гиперграфа. Множество всех разрезаний представляется в виде И–ИЛИ-дерева. Дерево содержит информацию о планах разборки изделия и его частей. Предложены математические описания процессов разборки различного типа: полной, неполной, линейной, нелинейной. Показано, что решающий граф И–ИЛИ-дерева представляет собой модель разборки изделия и всех его составных частей, полученных в процессе демонтажа. Рассмотрена важная характеристика сложности демонтажа деталей — глубина вложения. Разработан способ эффективного расчета оценки снизу данной характеристики.

    Bozhko A.N.
    Modeling of disassembly processes of complex products
    Computer Research and Modeling, 2022, v. 14, no. 3, pp. 525-537

    The work is devoted to modeling the processes of disassembling complex products in CADsystems. The ability to dismantle a product in a given sequence is formed at the early design stages, and is implemented at the end of the life cycle. Therefore, modern CAD-systems should have tools for assessing the complexity of dismantling parts and assembly units of a product. A hypergraph model of the mechanical structure of the product is proposed. It is shown that the mathematical description of coherent and sequential disassembly operations is the normal cutting of the edge of the hypergraph. A theorem on the properties of normal cuts is proved. This theorem allows us to organize a simple recursive procedure for generating all cuts of the hypergraph. The set of all cuts is represented as an AND/OR-tree. The tree contains information about plans for disassembling the product and its parts. Mathematical descriptions of various types of disassembly processes are proposed: complete, incomplete, linear, nonlinear. It is shown that the decisive graph of the AND/OR-tree is a model of disassembling the product and all its components obtained in the process of dismantling. An important characteristic of the complexity of dismantling parts is considered — the depth of nesting. A method of effective calculation of the estimate from below has been developed for this characteristic.

  3. Божко А.Н., Ливанцов В.Э.
    Оптимизация стратегии геометрического анализа в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 825-840

    Автоматизация проектирования процессов сборки сложных изделий — это важная и сложная научно-техническая проблема. Последовательность сборки и содержание сборочных операций в значительной степени зависят от механической структуры и геометрических свойств изделия. Приведен обзор методов геометрического моделирования, которые применяются в современных системах автоматизированного проектирования. Моделирование геометрических препятствий при сборке методами анализа столкновений, планирования перемещений и виртуальной реальности требует очень больших вычислительных ресурсов. Комбинаторные методы дают только слабые необходимые условия геометрической разрешимости. Рассматривается важная задача минимизации числа геометрических проверок при синтезе сборочных операций и процессов. Формализация этой задачи основана на гиперграфовой модели механической структуры изделия. Эта модель дает корректное математическое описание когерентных и секвенциальных сборочных операций, которые доминируют в современном дискретном производстве. Введено ключевое понятие геометрической ситуации. Это такая конфигурация деталей при сборке, которая требует проверки на свободу от препятствий, и эта проверка дает интерпретируемые результаты. Предложено математическое описание геометрической наследственности при сборке сложных изделий. Аксиомы наследственности позволяют распространить результаты проверки одной геометрической ситуации на множество других ситуаций. Задача минимизации числа геометрических тестов поставлена как неантагонистическая игра ЛПР и природы, в которой требуется окрасить вершины упорядоченного множества в два цвета. Вершины представляют собой геометрические ситуации, а цвет — это метафора результата проверки на свободу от коллизий. Ход ЛПР заключается в выборе неокрашенной вершины, ответ природы — это цвет вершины, который определяется по результатам моделирования данной геометрической ситуации. В игре требуется окрасить упорядоченное множество за минимальное число ходов. Обсуждается проектная ситуация, в которой ЛПР принимает решение в условиях риска. Предложен способ подсчета вероятностей окраски вершин упорядоченного множества. Описаны основные чистые стратегии рационального поведения в данной игре. Разработан оригинальный синтетический критерий принятия рациональных решений в условиях риска. Предложены две эвристики, которые можно использовать для окрашивания упорядоченных множеств большой мощности и сложной структуры.

    Bozhko A.N., Livantsov V.E.
    Optimization of geometric analysis strategy in CAD-systems
    Computer Research and Modeling, 2024, v. 16, no. 4, pp. 825-840

    Computer-aided assembly planning for complex products is an important engineering and scientific problem. The assembly sequence and content of assembly operations largely depend on the mechanical structure and geometric properties of a product. An overview of geometric modeling methods that are used in modern computer-aided design systems is provided. Modeling geometric obstacles in assembly using collision detection, motion planning, and virtual reality is very computationally intensive. Combinatorial methods provide only weak necessary conditions for geometric reasoning. The important problem of minimizing the number of geometric tests during the synthesis of assembly operations and processes is considered. A formalization of this problem is based on a hypergraph model of the mechanical structure of the product. This model provides a correct mathematical description of coherent and sequential assembly operations. The key concept of the geometric situation is introduced. This is a configuration of product parts that requires analysis for freedom from obstacles and this analysis gives interpretable results. A mathematical description of geometric heredity during the assembly of complex products is proposed. Two axioms of heredity allow us to extend the results of testing one geometric situation to many other situations. The problem of minimizing the number of geometric tests is posed as a non-antagonistic game between decision maker and nature, in which it is required to color the vertices of an ordered set in two colors. The vertices represent geometric situations, and the color is a metaphor for the result of a collision-free test. The decision maker’s move is to select an uncolored vertex; nature’s answer is its color. The game requires you to color an ordered set in a minimum number of moves by decision maker. The project situation in which the decision maker makes a decision under risk conditions is discussed. A method for calculating the probabilities of coloring the vertices of an ordered set is proposed. The basic pure strategies of rational behavior in this game are described. An original synthetic criterion for making rational decisions under risk conditions has been developed. Two heuristics are proposed that can be used to color ordered sets of high cardinality and complex structure.

  4. Божко А.Н.
    Структурные модели изделия в автоматизированных системах проектирования
    Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1079-1091

    Автоматизированное проектирование процессов сборки сложных систем — это важное направление современных информационных технологий. Последовательность сборки и декомпозиция изделия на сборочные единицы в значительной степени зависят от механической структуры технической системы (машины, механического прибора и др.). В большей части современных исследований механическая структура изделий моделируется при помощи графа связей и различных его модификаций. Координация деталей при сборке может достигаться реализацией нескольких связей одновременно. Это порождает на множестве деталей изделия многоместное отношение базирования, которое не может быть корректно описано графовыми средствами. Предложена гиперграфовая модель механической структуры изделия. В современном дискретном производстве используются секвенциальные когерентные сборочные операции. Математическим описанием таких операций служит нормальное стягивание ребер гиперграфовой модели. Последовательность стягиваний, которая преобразуют гиперграф в точку, представляет собой описание сборочного плана. Гиперграфы, для которых существует такое преобразование, называются $s$-гиперграфами. $s$-гиперграфы — это корректные математические модели механических структур любых собираемых изделий. Приводится теорема о необходимых условиях стягиваемости $s$-гиперграфов. Показано, что необходимые условия не являются достаточными. Дан пример нестягиваемого гиперграфа, для которого выполняются необходимые условия. Это значит, что проект сложной технической системы может содержать скрытые структурные ошибки, которые делают невозможным сборку изделия. Поэтому поиск достаточных условий стягиваемости является важной задачей. Доказаны две теоремы о достаточных условиях стягиваемости. Они дают теоретическое основание для разработки эффективной вычислительной процедуры поиска всех $s$-подграфов $s$-гиперграфа. $s$-подграф — это модель любой части изделия, которую можно собрать независимо. Это прежде всего сборочные единицы различного уровня иерархии. Упорядоченное по включению множество всех $s$-подграфов $s$-гиперграфа представляет собой решетку. Эту модель можно использовать для синтеза всевозможных последовательностей сборки и разборки изделия и его составных частей. Решеточная модель изделия позволяет анализировать геометрические препятствия при сборке алгебраическими средствами.

    Bozhko A.N.
    Structural models of product in CAD-systems
    Computer Research and Modeling, 2024, v. 16, no. 5, pp. 1079-1091

    Computer-aided assembly planning of complex products is an important area of modern information technology. The sequence of assembly and decomposition of the product into assembly units largely depend on the mechanical structure of a technical system (machine, mechanical device, etc.). In most modern research, the mechanical structure of products is modeled using a graph of connections and its various modifications. The coordination of parts during assembly can be achieved by implementing several connections at the same time. This generates a $k$-ary basing relation on a set of product parts, which cannot be correctly described by graph means. A hypergraph model of the mechanical structure of a product is proposed. Modern discrete manufacturing uses sequential coherent assembly operations. The mathematical description of such operations is the normal contraction of edges of the hypergraph model. The sequence of contractions that transform the hypergraph into a point is a description of the assembly plan. Hypergraphs for which such a transformation exists are called $s$-hypergraphs. $S$-hypergraphs are correct mathematical models of the mechanical structures of any assembled products. A theorem on necessary conditions for the contractibility of $s$-hypergraphs is given. It is shown that the necessary conditions are not sufficient. An example of a noncontractible hypergraph for which the necessary conditions are satisfied is given. This means that the design of a complex technical system may contain hidden structural errors that make assembly of the product impossible. Therefore, finding sufficient conditions for contractibility is an important task. Two theorems on sufficient conditions for contractibility are proved. They provide a theoretical basis for developing an efficient computational procedure for finding all $s$-subgraphs of an $s$-hypergraph. An $s$-subgraph is a model of any part of a product that can be assembled independently. These are, first of all, assembly units of various levels of hierarchy. The set of all $s$-subgraphs of an $s$-hypergraph, ordered by inclusion, is a lattice. This model can be used to synthesize all possible sequences of assembly and disassembly of a product and its components. The lattice model of the product allows you to analyze geometric obstacles during assembly using algebraic means.

  5. В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.

    Madera A.G.
    Hierarchical method for mathematical modeling of stochastic thermal processes in complex electronic systems
    Computer Research and Modeling, 2019, v. 11, no. 4, pp. 613-630

    A hierarchical method of mathematical and computer modeling of interval-stochastic thermal processes in complex electronic systems for various purposes is developed. The developed concept of hierarchical structuring reflects both the constructive hierarchy of a complex electronic system and the hierarchy of mathematical models of heat exchange processes. Thermal processes that take into account various physical phenomena in complex electronic systems are described by systems of stochastic, unsteady, and nonlinear partial differential equations and, therefore, their computer simulation encounters considerable computational difficulties even with the use of supercomputers. The hierarchical method avoids these difficulties. The hierarchical structure of the electronic system design, in general, is characterized by five levels: Level 1 — the active elements of the ES (microcircuits, electro-radio-elements); Level 2 — electronic module; Level 3 — a panel that combines a variety of electronic modules; Level 4 — a block of panels; Level 5 — stand installed in a stationary or mobile room. The hierarchy of models and modeling of stochastic thermal processes is constructed in the reverse order of the hierarchical structure of the electronic system design, while the modeling of interval-stochastic thermal processes is carried out by obtaining equations for statistical measures. The hierarchical method developed in the article allows to take into account the principal features of thermal processes, such as the stochastic nature of thermal, electrical and design factors in the production, assembly and installation of electronic systems, stochastic scatter of operating conditions and the environment, non-linear temperature dependencies of heat exchange factors, unsteady nature of thermal processes. The equations obtained in the article for statistical measures of stochastic thermal processes are a system of 14 non-stationary nonlinear differential equations of the first order in ordinary derivatives, whose solution is easily implemented on modern computers by existing numerical methods. The results of applying the method for computer simulation of stochastic thermal processes in electron systems are considered. The hierarchical method is applied in practice for the thermal design of real electronic systems and the creation of modern competitive devices.

    Просмотров за год: 3.
  6. Плохотников К.Э.
    Об устойчивости гравитационной системы многих тел
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 487-511

    В работе под гравитационной системой понимается множество точечных тел, взаимодействующих согласно закону притяжения Ньютона и имеющих отрицательное значение полной энергии. Обсуждается вопрос об устойчивости (о неустойчивости) гравитационной системы общего положения путем прямого вычислительного эксперимента. Под гравитационной системой общего положения понимается система, у которой массы, начальные позиции и скорости тел выбираются случайными из заданных диапазонов. Для проведения вычислительного эксперимента разработан новый метод численного решения обыкновенных дифференциальных уравнений на больших интервалах времени. Предложенный метод позволил, с одной стороны, обеспечить выполнение всех законов сохранения путем подходящей коррекции решений, с другой — использовать стандартные методы численного решения систем дифференциальных уравнений невысокого порядка аппроксимации. В рамках указанного метода траектория движения гравитационной системы в фазовом пространстве собирается из частей, длительность каждой из которых может быть макроскопической. Построенная траектория, вообще говоря, является разрывной, а точки стыковки отдельных кусков траектории выступают как точки ветвления. В связи с последним обстоятельством предложенный метод отчасти можно отнести к классу методов Монте-Карло. Общий вывод проведенной серии вычислительных экспериментов показал, что гравитационные системы общего положения с числом тел 3 и более, вообще говоря, неустойчивы. В рамках предложенного метода специально рассмотрены частные случаи равенства нулю момента импульса гравитационной системы с числом тел 3 и более, а также задача движения двух тел. Отдельно рассмотрен случай численного моделирования динамики во времени Солнечной системы. С позиций вычислительного эксперимента на базе аналитических методов, а также прямых численных методов высокого порядка аппроксимации (10 и выше) устойчивость Солнечной системы ранее продемонстрирована на интервале в пять и более миллиардов лет. В силу ограничений на имеющиеся вычислительные ресурсы устойчивость динамики планет Солнечной системы в рамках использования предлагаемого метода удалось подтвердить на срок десять миллионов лет. С помощью вычислительного эксперимента рассмотрен также один из возможных сценариев распада Солнечной системы.

    Plokhotnikov K.E.
    On the stability of the gravitational system of many bodies
    Computer Research and Modeling, 2021, v. 13, no. 3, pp. 487-511

    In this paper, a gravitational system is understood as a set of point bodies that interact according to Newton's law of attraction and have a negative value of the total energy. The question of the stability (nonstability) of a gravitational system of general position is discussed by direct computational experiment. A gravitational system of general position is a system in which the masses, initial positions, and velocities of bodies are chosen randomly from given ranges. A new method for the numerical solution of ordinary differential equations at large time intervals has been developed for the computational experiment. The proposed method allowed, on the one hand, to ensure the fulfillment of all conservation laws by a suitable correction of solutions, on the other hand, to use standard methods for the numerical solution of systems of differential equations of low approximation order. Within the framework of this method, the trajectory of a gravitational system in phase space is assembled from parts, the duration of each of which can be macroscopic. The constructed trajectory, generally speaking, is discontinuous, and the points of joining of individual pieces of the trajectory act as branch points. In connection with the latter circumstance, the proposed method, in part, can be attributed to the class of Monte Carlo methods. The general conclusion of a series of computational experiments has shown that gravitational systems of general position with a number of bodies of 3 or more, generally speaking, are unstable. In the framework of the proposed method, special cases of zero-equal angular momentum of a gravitational system with a number of bodies of 3 or more, as well as the problem of motion of two bodies, are specially considered. The case of numerical modeling of the dynamics of the solar system in time is considered separately. From the standpoint of computational experiments based on analytical methods, as well as direct numerical methods of high-order approximation (10 and higher), the stability of the solar system was previously demonstrated at an interval of five billion years or more. Due to the limitations on the available computational resources, the stability of the dynamics of the planets of the solar system within the framework of the proposed method was confirmed for a period of ten million years. With the help of a computational experiment, one of the possible scenarios for the disintegration of the solar systems is also considered.

  7. Божко А.Н.
    Анализ механических структур сложных технических систем
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 903-916

    Работа посвящена структурному анализу сложных технических систем. Рассматриваются механические структуры, свойства которых влияют на поведение изделия в процессе сборки, ремонта и эксплуатации. Основным источником данных о деталях и механических связях между ними является гиперграф. Эта модель формализует многоместное отношение базирования. Она корректно описывает связность и взаимную координацию деталей, которые достигаются в процессе сборки изделия. При разработке сложных изделий в CAD-системах инженер часто допускает тяжелые проектные ошибки: перебазирование деталей и несеквенциальность сборочных операций. Предложены эффективные способы идентификации данных структурных дефектов. Показано, что свойство независимой собираемости можно представить как оператор замыкания на булеане множества деталей изделия. Образы этого оператора представляют собой связные координированные совокупности деталей, которые можно собрать независимо. Описана решеточная модель, которая представляет собой пространство состояний изделия в процессе сборки, разборки и декомпозиции на сборочные единицы. Решеточная модель служит источником разнообразной структурной информации о проекте. Предложены численные оценки мощности множества допустимых альтернатив в задачах выбора последовательности сборки и декомпозиции на сборочные единицы. Для многих технических операций (например, контроль, испытания и др.) необходимо монтировать все детали-операнды в одну сборочную единицу. Разработана простая формализация технических условий, требующих включения (исключения) деталей в сборочную единицу (из сборочной единицы). Приведена теорема, которая дает математическое описание декомпозиции изделия на сборочные единицы в точных решеточных терминах. Предложен способ численной оценки робастности механической структурыс ложной технической системы.

    Bozhko A.N.
    Analysis of mechanical structures of complex technical systems
    Computer Research and Modeling, 2021, v. 13, no. 5, pp. 903-916

    The work is devoted to the structural analysis of complex technical systems. Mechanical structures are considered, the properties of which affect the behavior of products during assembly, repair and operation. The main source of data on parts and mechanical connections between them is a hypergraph. This model formalizes the multidimensional basing relation. The hypergraph correctly describes the connectivity and mutual coordination of parts, which is achieved during the assembly of the product. When developing complex products in CAD systems, an engineer often makes serious design mistakes: overbasing of parts and non-sequential assembly operations. Effective ways of identifying these structural defects have been proposed. It is shown that the property of independent assembly can be represented as a closure operator whose domain is the boolean of the set of product parts. The images of this operator are connected and coordinated subsets of parts that can be assembled independently. A lattice model is described, which is the state space of the product during assembly, disassembly and decomposition into assembly units. The lattice model serves as a source of various structural information about the project. Numerical estimates of the cardinality of the set of admissible alternatives in the problems of choosing an assembly sequence and decomposition into assembly units are proposed. For many technical operations (for example, control, testing, etc.), it is necessary to mount all the operand parts in one assembly unit. A simple formalization of the technical conditions requiring the inclusion (exclusion) of parts in the assembly unit (from the assembly unit) has been developed. A theorem that gives an mathematical description of product decomposition into assembly units in exact lattice terms is given. A method for numerical evaluation of the robustness of the mechanical structure of a complex technical system is proposed.

  8. Грачев В.А., Найштут Ю.С.
    Сетчатые развертывающиеся оболочки из полос, образованных трапециевидными пластинами
    Компьютерные исследования и моделирование, 2012, т. 4, № 1, с. 63-73

    Изучаются развертывающиеся системы, составленные из набора трапециевидных пластин. Средние линии пластин в первоначальном положении пакета представляют собой плоскую кривую. Доказывается, что при разворачивании пакета из тонких пластинок, образуется поверхность, аппроксимирующая оболочку практически любой кривизны. Строится кинематика континуальной модели методом подвижного репера Картана, обобщающая ранее опубликованные результаты авторов. Показаны приложения к оболочкам вращения. Представлены экспериментальные модели развертывающихся систем.

    Grachev V.A., Nayshtut Yu.S.
    Latticed deployable shells made of strips assembled from trapezoid plates
    Computer Research and Modeling, 2012, v. 4, no. 1, pp. 63-73

    This paper covers deployable systems assembled from a set of trapezium plates. The middles lines of the plates represent a plane curve in the original position of the package. It is proved that when the package of thin plates is unwrapped, a surface approximating a shell of nearly any curvature is formed. Kinematics of the continual model is analyzed by the method of Cartan moving hedron, extending the results the authors published earlier. Various applications of rotating shells are shown. Experimental models of deployable latticed systems are demonstrated.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  9. Диденко Д.В., Никаноров О.Л., Рогожкин С.А.
    Расчетное исследование запаса до всплытия тепловыделяющей сборки быстрого натриевого реактора
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1307-1321

    В статье приводится описание расчетного исследования гидродинамических процессов, происходящих при течении теплоносителя через тепловыделяющую сборку активной зоны реактора на быстрых нейтронах с натриевым теплоносителем. В рамках исследования разработаны методика и расчетная модель на базе программного комплекса вычислительной гидродинамики FlowVision, которые позволили с помощью обоснованных упрощений получить коэффициент запаса до всплытия тепловыделяющей сборки, а также исследовать гидродинамические характеристики процессов, происходящих при моделировании различных исходных событий, влияющих на движение тепловыделяющей сборки активной зоны реактора.

    Для проведения расчетного обоснования разработана эквивалентная по гидравлическим сопротивлениям модель тепловыделяющей сборки, позволяющая не моделировать явным образом сложную натурную конструкцию сборки. Упрощение геометрии сборки позволило уменьшить количество расчетных ячеек в модели и сократить используемые вычислительные ресурсы и время счета.

    Выполнение расчетов гидродинамических параметров эквивалентной модели тепловыделяющей сборки в программном комплексе FlowVision проводилось в два этапа. На первом этапе с целью определения минимального коэффициента запаса до всплытия тепловыделяющей сборки и минимального расхода теплоносителя, при котором происходит перемещение сборки, проведены стационарные расчеты, в которых на входе в модель были заданы различные значения расхода и, далее, определены силы, действующие на сборку. На втором этапе проведена серия расчетов динамических режимов. В этих режимах на входе в модель было задано скачкообразное увеличение давления, являющееся исходным событием, которое гипотетически может произойти в реакторной установке на быстрых нейтронах с натриевым теплоносителем, а также определены гидродинамические параметры и силы, действующие на тепловыделяющую сборку.

    По результатам первого этапа расчетного исследования подтверждены минимальный коэффициент запаса до всплытия тепловыделяющей сборки реактора на быстрых нейтронах, обоснованный в материалах проекта реакторной установки, а также минимальный расход теплоносителя через сборку, при котором возможно ее перемещение. По итогам второго этапа исследования сделаны выводы о невозможности перемещения тепловыделяющей сборки при исходном событии, связанном со скачкообразным повышением давления в напорной камере реактора.

    Didenko D.V., Nikanorov O.L., Rogozhkin S.A.
    Analytical study of rod lifting margin of fuel assembly of fast sodium reactor
    Computer Research and Modeling, 2020, v. 12, no. 6, pp. 1307-1321

    The paper describes an analytical study of hydrodynamic processes taking place in the course of coolant flow through a fuel assembly of the core of a fast neutron sodium-cooled reactor. Within the framework of the study, a procedure and an analytical model were developed based on program complex FlowVision of computational fluid dynamics, which, using proved simplifications, permits to obtain a coefficient of rod lifting margin of a fuel assembly and to study hydrodynamic characteristics of processes taking place in the course of simulation of different initial events influencing motion of a reactor core fuel assembly.

    For analytical justification a fuel assembly model was developed, which is equivalent by hydraulic resistance values and permits not to simulate explicitly a complicated full-scale fuel assembly design, thus, decreasing a number of computational cells in the model and, as a result, reducing computational and time resources.

    Hydraulic parameters of the equivalent fuel assembly model in program complex FlowVision were analyzed in two stages. At the first stage, to determine the minimum rod lifting margin coefficient of a fuel assembly, steady-state analyses were performed, where various flowrate values were assigned at the model inlet and forces acting upon the assembly were analyzed. A series of dynamic mode analyses was performed at the second stage. Jump-like pressure increase being the initial event which could occur hypothetically in the fast neutron sodium cooled reactor plant was assigned in these modes. Hydrodynamic parameters and forces acting upon the fuel assembly were determined.

    The results of the first stage of the analytical study proved the minimum coefficient of rod lifting margin of a fuel assembly of the fast neutron reactor justified in reactor plant design documentation. As a result of the second stage of the study, conclusions were made on impossibility for the fuel assembly to move at the initial event associated with jump-like pressure increase in the reactor pressure chamber.

  10. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    The currently performed mathematical and computer modeling of thermal processes in technical systems is based on an assumption that all the parameters determining thermal processes are fully and unambiguously known and identified (i.e., determined). Meanwhile, experience has shown that parameters determining the thermal processes are of undefined interval-stochastic character, which in turn is responsible for the intervalstochastic nature of thermal processes in the electronic system. This means that the actual temperature values of each element in an technical system will be randomly distributed within their variation intervals. Therefore, the determinative approach to modeling of thermal processes that yields specific values of element temperatures does not allow one to adequately calculate temperature distribution in electronic systems. The interval-stochastic nature of the parameters determining the thermal processes depends on three groups of factors: (a) statistical technological variation of parameters of the elements when manufacturing and assembling the system; (b) the random nature of the factors caused by functioning of an technical system (fluctuations in current and voltage; power, temperatures, and flow rates of the cooling fluid and the medium inside the system); and (c) the randomness of ambient parameters (temperature, pressure, and flow rate). The interval-stochastic indeterminacy of the determinative factors in technical systems is irremediable; neglecting it causes errors when designing electronic systems. A method that allows modeling of unsteady interval-stochastic thermal processes in technical systems (including those upon interval indeterminacy of the determinative parameters) is developed in this paper. The method is based on obtaining and further solving equations for the unsteady statistical measures (mathematical expectations, variances and covariances) of the temperature distribution in an technical system at given variation intervals and the statistical measures of the determinative parameters. Application of the elaborated method to modeling of the interval-stochastic thermal process in a particular electronic system is considered.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.