Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Равномерные вложения графа в метрические пространства
Компьютерные исследования и моделирование, 2012, т. 4, № 2, с. 241-251Рассмотрена задача вложения бесконечного счетного графа в непрерывное метрическое пространство. Введено понятие равномерного вложения, при котором не возникает точек накопления на множестве образов вершин и образы ребер имеют ограниченную длину. Найдены необходимые и достаточные условия в терминах структуры графа для возможности равномерного вложения в пространства с метриками Эвклида и Лоренца. Доказано, что деревья с конечным ветвлением имеют равномерное вложение в пространство с метрикой модуля метрики Минковского.
Ключевые слова: метрическое пространство, бесконечный граф, факторграф, метрика Минковского, метрика Лоренца, метрика Эвклида.
Uniform graph embedding into metric spaces
Computer Research and Modeling, 2012, v. 4, no. 2, pp. 241-251The task of embedding an infinity countable graph into continuous metric space is considered. The concept of uniform embedding having no accumulation point in a set of vertex images and having all graph edge images of a limited length is introduced. Necessary and sufficient conditions for possibility of uniform embedding into spaces with Euclid and Lorenz metrics are stated in terms of graph structure. It is proved that tree graphs with finite branching have uniform embedding into space with absolute Minkowski metric.
Keywords: metric space, infinite graph, factor graph, Minkowski metric, Lorenz metric, Euclid metric.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"