Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Исследование механических свойств C-кадгерина методом молекулярной динамики
Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 727-735Просмотров за год: 5.В настоящей работе исследуется механическая стабильность белка клеточной адгезии, кадгерина, методом молекулярной динамики с использованием явной модели растворителя. Было проведено моделирование разворачивания белка за концы с постоянной скоростью для апоформы белка и при наличии в ней ионов разных типов (Ca2+, Mg2+, Na+, K+). Было выполнено по 8 независимых вычислительных экспериментов для каждой формы белка и показано, что одновалентные ионы меньше стабилизируют структуру, чем двухвалентные при механическом разворачивании молекулы кадгерина за концы. Модельная система из двух аминокислот и иона металла между ними в опытах по растяжению демонстрирует свойства аналогичные поведению кадгерина: cистемы с ионами калия и натрия обладают меньшей механической стабильностью на внешнее силовое воздействие в сравнении с системами с кальцием и магнием.
-
Описание процессов в ансамблях фотосинтетических реакционных центров с помощью кинетической модели типа Монте-Карло
Компьютерные исследования и моделирование, 2020, т. 12, № 5, с. 1207-1221Фотосинтетический аппарат растительной клетки состоит из множества фотосинтетических электронтранспортных цепей (ЭТЦ), каждая из которых участвует в усвоении квантов света, сопряженном с переносом электрона между элементами цепи. Эффективность усвоения квантов света варьирует в зависимости от физиологического состояния растения. Энергия той части квантов, которую не удается усвоить, диссипирует в тепло либо высвечивается в виде флуоресценции. При действии возбуждающего света уровень флуоресценции постепенно растет, доходя до максимума. Кривая роста уровня флуоресценции в ответ на действие возбуждающего света называется кривой индукции флуоресценции (КИФ). КИФ имеет сложную форму, которая претерпевает существенные изменения при различных изменениях состояния фотосинтетического аппарата, что позволяет использовать ее для получения информации о текущем состоянии растения.
В реальном эксперименте, при действии возбуждающего света, мы наблюдаем ответ системы, представляющей собой ансамбль миллионов фотосинтетических ЭТЦ. С целью воспроизведения вероятностной природы процессов в фотосинтетической ЭТЦ разработана кинетическая модель Монте-Карло, в которой для каждой индивидуальной цепи определены вероятности возбуждения молекул светособирающей антенны при попадании кванта света, вероятности захвата энергии либо высвечивания кванта света реакционным центром и вероятности переноса электрона с донора на акцептор в пределах фотосинтетических мультиферментных комплексов в тилакоидной мембране и между этими комплексами и подвижными переносчиками электронов. События, происходящие в каждой из цепей фиксируются, суммируются и формируют кривую индукции флуоресценции и кривые изменения долей различных редокс-состояний переносчиков электрона, входящих в состав фотосинтетической электронтранспортной цепи. В работе описаны принципы построения модели, изучены зависимости кинетики регистрируемых величин от параметров модели, приведены примеры полученных зависимостей, соответствующие экспериментальным данными по регистрации флуоресценции хлорофилла реакционного центра фотосистемы 2 и окислительно-восстановительных превращений фотоактивного пигмента фотосистемы 1 — хлорофилла.
-
Моделирование нетто-экосистемного обмена диоксида углерода сенокоса на осушенной торфяной почве: анализ сценариев использования
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1427-1449Нетто-экосистемный обмен (NEE) — ключевой компонент углеродного баланса, характеризующий экосистему как источник или сток углерода. В работе интерпретируются данные натурных измерений NEE и составляющих его компонентов (дыхания почвы — Rsoil, экосистемы — Reco и валового газообмена — GEE) сенокоса и залежи методами математического моделирования. Измерения проводились в ходе пяти полевых кампаний 2018 и 2019 гг. на осушенной части Дубненского болотного массива в Талдомском районе Московской области. После осушения для добычи торфа остаточная торфяная залежь (1–1.5 м) была распахана и впоследствии залужена под сенокосы. Измерение потоков CO2 проводили с помощью динамических камер: при ненарушенной растительности измеряли NEE и Reco, а при ее удалении — Rsoil. Для моделирования потоков CO2 была использована их связь с температурой почвы и воздуха, уровнем почвенно-грунтовых вод, фотосинтетически активной радиацией, подземной и надземной фитомассой растений. Параметризация моделей проведена с учетом устойчивости коэффициентов, оцененной методом статистического моделирования (бутстрэпа). Проведены численные эксперименты по оценке влияния различных режимов использования сенокоса на NEE. Установлено, что общий за сезон (с 15 мая по 30 сентября) NEE значимо не отличался на сенокосе без кошения (К0) и залежи, составив соответственно 4.5±1.0 и 6.2±1.4 тС·га–1·сезон–1. Таким образом, оба объекта являются источником диоксида углерода в атмосферу. Однократное в сезон кошение сенокоса (К1) приводит к росту NEE до 6.5±0.9, а двукратное (К2) — до 7.5±1.4 тС·га–1·сезон–1. Как при К1, так и при К2 потери углерода незначительно увели- чиваются в сравнении с К0 и оказываются близкими в сравнении с залежью. При этом накопленный растениями углерод частично переводится при кошении в сельскохозяйственную продукцию (величина скошенной фитомассы для К1 и К2 составляет 0.8±0.1 и 1.4±0.1 тС·га–1·сезон–1), в то время как на залежи его значительная часть возвращается в атмосферу при отмирании и последующем разложении растений.
-
Обнаружение точек разворота на финансовых данных с помощью методов глубокого машинного обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 555-575Цель настоящего исследования заключается в разработке методологии выявления точек разворота на временных рядах, включая в том числе финансовые данные. Теоретической основой исследования послужили работы, посвященные анализу структурных изменений на финансовых рынках, описанию предложенных алгоритмов обнаружения точек разворота и особенностям построения моделей классического и глубокого машинного обучения для решения данного типа задач. Разработка подобного инструментария представляет интерес для инвесторов и других заинтересованных сторон, предоставляя дополнительные подходы к эффективному анализу финансовых рынков и интерпретации доступных данных.
Для решения поставленной задачи была обучена нейронная сеть. В ходе исследования было рассмотрено несколько способов формирования тренировочных выборок, которые различаются характером статистических параметров. Для повышения качества обучения и получения более точных результатов была разработана методология формирования признаков, служащих входными данными для нейронной сети. В свою очередь, эти признаки формируются на основе анализа математического ожидания и стандартного отклонения временных рядов на некоторых интервалах. Также исследуется возможностьих комбинации для достижения более стабильных результатов.
Результаты модельных экспериментов анализируются с целью сравнения эффективности предложенной модели с другими существующими алгоритмами обнаружения точек разворота, получившими широкое применение в решении практических задач. В качестве тренировочных и тестовых данных используется специально созданный датасет, генерация которого осуществляется с использованием собственных методов. Кроме того, обученная на различных признаках модельте стируется на дневных данных индекса S&P 500 в целях проверки ее эффективности в реальном финансовом контексте.
По мере описания принципов работы модели рассматриваются возможности для дальнейшего ее усовершенствования: модернизации структуры предложенного механизма, генерации тренировочных данных и формирования признаков. Кроме того, перед авторами стоит задача развития существующих концепций определения точек изменения в режиме реального времени.
Ключевые слова: точки разворота, временные ряды, финансовые рынки, машинное обучение, нейронные сети. -
Мультистабильные сценарии для дифференциальных уравнений, описывающих динамику системы хищников и жертв
Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1451-1466Для системы автономных дифференциальных уравнений изучаются динамические сценарии, приводящие к мультистабильности в виде континуальных семейств устойчивых решений. Используется подход на основе определения косимметрий задачи, вычисления стационарных решений и численно-аналитического исследования их устойчивости. Анализ проводится для уравнений типа Лотки – Вольтерры, описывающих взаимодействие двух хищников, питающихся двумя родственными видами жертв. Для системы обыкновенных дифференциальных уравнений 4-го порядка с 11 вещественными параметрами проведено численно-аналитическое исследование возможных сценариев взаимодействия. Аналитически найдены соотношения между управляющими параметрами, при которых реализуется линейная по переменным задачи косимметрия и возникают семейства стационарных решений (равновесий). Установлен случай мультикосимметрии и представлены явные формулы для двупараметрического семейства равновесий. Анализ устойчивости этих решений позволил обнаружить разделение семейства на области устойчивых и неустойчивых равновесий. В вычислительном эксперименте определены ответвившиеся от неустойчивых стационарных решений предельные циклы и вычислены их мультипликаторы, отвечающие мультистабильности. Представлены примеры сосуществования семейств устойчивых стационарных и нестационарных решений. Проведен анализ для функций роста логистического и «гиперболического» типов. В зависимости от параметров могут получаться сценарии, когда в фазовом пространстве реализуются только стационарные решения (сосуществование жертв без хищников и смешанные комбинации), а также семейства предельных циклов. Рассмотренные в работе сценарии мультистабильности позволяют анализировать ситуации, возникающие при наличии нескольких родственных видов на ареале. Эти результаты являются основой для последующего анализа при отклонении параметров от косимметричных соотношений.
-
О подходе к разработке и валидации алгоритмов маршрутизации на разрывных сетях
Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 983-993В данной статье рассматривается проблема централизованного планирования маршрутов передачи данных в сетях, устойчивых к задержкам и разрывам. Исходная проблема расширяется дополнительными требованиями к хранению узлов и процессу связи. Во-первых, предполагается, что связь между узлами графа устанавливается с помощью антенн. Во-вторых, предполагается, что каждый узел имеет хранилище конечной емкости. Существующие работы не рассматривают и не решают задачу с этими ограничениями. Предполагается, что заранее известны информация о сообщениях, подлежащих обработке, информация о конфигурации сети в указанные моменты времени, взятые с определенными периодами, информация о временных задержках для ориентации антенн для передачи данных и ограничения на объем хранения данных на каждом спутнике группировки. Два хорошо известных алгоритма — CGR и Earliest Delivery with All Queues — модифицированы для удовлетворения расширенных требований. Полученные алгоритмы решают задачу поиска оптимального маршрута в сети, устойчивой к разрывам, отдельно для каждого сообщения. Также рассматривается проблема валидации алгоритмов в условиях отсутствия тестовых данных. Предложены и апробированы возможные подходы к валидации, основанные на качественных предположениях, описаны результаты экспериментов. Проведен сравнительный анализ производительности двух алгоритмов решения задачи маршрутизации. Два алгоритма, названные RDTNAS-CG и RDTNAS-AQ, были разработаны на основе алгоритмов CGR и Earliest Delivery with All Queues соответственно. Оригинальные алгоритмы были значительно расширены и была разработана дополненная реализация. Валидационные эксперименты были проведены для проверки минимальных требований «качества» к правильности алгоритмов. Сравнительный анализ производительности двух алгоритмов показал, что алгоритм RDTNAS-AQ на несколько порядков быстрее, чем RDTNAS-CG.
-
Трехмерное молекулярно-динамическое моделирование термодинамического равновесия нагретого никеля
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 573-579Представленная работа посвящена молекулярно-динамическому моделированию процессов термического воздействия на металлический образец, который состоит из атомов никеля. Для решения этой задачи используется континуальная математическая модель, основанная на уравнениях классической механики Ньютона, выбран численный метод, использующий в основе схему Верле, предложен параллельный алго- ритм и осуществлена его реализация в рамках MPIи OpenMP. С помощью разработанной параллельной программы было проведено исследование термодинамического равновесия атомов никеля при условии нагрева образца до желаемой температуры. В численных экспериментах определены оптимальные параметры методики расчета и физические параметры исследуемого процесса. Полученные численные результаты хорошо согласуются с известными теоретическими и экспериментальными данными.
Ключевые слова: молекулярно-динамическое моделирование, никель, ППА, температура, термостат, уравнения Ньютона, параллельные алгоритмы и программы, MPI, OpenMP.Просмотров за год: 2. -
Комплекс слежения за вычислительными задачами в системе информационной поддержки научных проектов
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 615-620Просмотров за год: 2. Цитирований: 1 (РИНЦ).В данной работе рассматривается идея системы информационной поддержки научных проектов и построение комплекса слежения за вычислительными задачами. Ввиду больших потребностей в вычислительных экспериментах предоставление информации о вычислительных задачах на HPC-ресурсах становится одной из важнейших проблем. В качестве решения этой проблемы предлагается нестандартное использование системы service desk — построение на ее базе комплекса слежения за выполнением вычислительных задач на распределенной системе и ее сопровождения. Особое внимание в статье уделено анализу и удовлетворению противоречивых требований к комплексу со стороны разных групп пользователей. Помимо этого, рассмотрена система веб-служб, служащая для интеграции комплекса слежения с окружением датацентра. Данный набор веб-служб является основным связующим компонентом системы поддержки научных проектов и позволяет гибко изменять конфигурацию системы в целом в любое время с минимальными потерями.
-
Ресурсный центр обработки данных уровня Tier-1 в национальном исследовательском центре «Курчатовский институт» для экспериментов ALICE, ATLAS и LHCb на Большом адронном коллайдере (БАК)
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 621-630Просмотров за год: 2.Представлен обзор распределенной вычислительной инфраструктуры ресурсных центров коллаборации WLCG для экспериментов БАК. Особое внимание уделено описанию решаемых задач и основным сервисам нового ресурсного центра уровня Tier-1, созданного в Национальном исследовательском центре «Курчатовский институт» для обслуживания ALICE, ATLAS и LHCb экспериментов (г. Москва).
-
Метод представления дифракционных изображений XFEL для классификации, индексации и поиска
Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 631-639Просмотров за год: 6.В работе представлены результаты применения алгоритмов машинного обучения: метода главных компонент и метода опорных векторов для классификации дифракционных изображений, полученных в экспериментах на лазерах на свободных электронах. Показана высокая эффективность применения такого подхода с использованием модельных данных дифракции лазерного пучка на капсиде аденовируса и вируса катаральной лихорадки, в которых учтены условия реального эксперимента на лазерах на свободных электронах, такие как шум и особенности используемых детекторов.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"