Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'экспериментальная математика':
Найдено статей: 11
  1. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 673-675
    Просмотров за год: 1.
  2. От редакции
    Компьютерные исследования и моделирование, 2017, т. 9, № 2, с. 139-142
    Просмотров за год: 2.
  3. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 3-5
    Просмотров за год: 10.
  4. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 379-381
    Просмотров за год: 36.
  5. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  6. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 229-233
  7. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 259-261
  8. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 455-457
  9. Матюшкин И.В., Заплетина М.А.
    Компьютерное исследование голоморфной динамики экспоненциального и линейно-экспоненциального отображений
    Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 383-405

    Работа принадлежит направлению экспериментальной математики, исследующей свойства математических объектов вычислительными средствами компьютера. Базовым отображением служит экспоненциальное, топологические свойства (букеты Кантора) которого отличаются от свойств полиномиальных и рациональных функций на комплексной плоскости. Предметом исследования являются характер и особенности множеств Фату и Жюлиа, а также точек равновесия и орбит нуля трех итерированных комплекснозначных отображений: $f:z \to (1+ \mu) \exp (iz)$, $g : z \to \big(1+ \mu |z - z^*|\big) \exp (iz)$, $h : z \to \big(1+ \mu (z - z^* )\big) \exp (iz)$, где $z,\mu \in \mathbb{C}$, $z^* : \exp (iz^*) = z^*$. Для квазилинейного отображения g, не обладающего свойством аналитичности, было обнаружено два бифуркационных перехода: рождение новой точки равновесия (для него было найдено критическое значение параметра, а сама бифуркация представляет собой смешанный случай «вилки» и седлоузельного перехода) и переход к радикальной трансформации множества Фату. Выявлен нетривиальный характер сходимости к фиксированной точке, связанный с появлением «долин» на графике скоростей сходимости. Для двух других отображений существенна монопериодичность режимов, отмечен феномен «удвоения периода» (в одном случае по пути $39\to 3$, в другом — по пути $17\to 2$), причем обнаружено совпадение кратности периода и числа рукавов спирали множества Жюлиа в окрестности фиксированной точки. Приведен богатый иллюстративный материал, численные результаты экспериментов и сводные таблицы, отражающие параметрическую зависимость отображений. Сформулированы вопросы для дальнейшего исследования средствами традиционной математики.

    Просмотров за год: 51. Цитирований: 1 (РИНЦ).
  10. В работе описывается свободно распространяемая прикладная программа для исследований в области голоморфной динамики на основе вычислительных возможностей среды MATLAB. Программа позволяет строить не только одиночные комплекснозначные отображения, но и их коллективы как линейно связанные, на квадратной или гексагональной решетке. В первом случае строятся аналоги множества Жюлиа (в виде точек убегания с цветовой индикацией скорости убегания), Фату (с выделением хаотической динамики) и множества Мандельброта, порожденного одним из двух свободных параметров. Во втором случае рассматривается только динамика клеточного автомата с комплекснозначным состоянием ячеек и всеми коэффициентами в локальной функции перехода. Абстрактность объектно-ориентированного программирования позволяет объединить оба типа расчета в рамках одной программы, описывающей итеративную динамику одного объекта.

    Для формы поля, начальных условий, шаблона окрестности и особенностей окрестности у граничных ячеек предусмотрены опции выбора. Вид отображения может быть задан регулярным для интерпретатора MATLAB выражением. В статье приводятся некоторые UML-диаграммы, краткое введение в пользовательский интерфейс и ряд примеров.

    В качестве рабочих иллюстраций, содержащих новое научное знание, были рассмотрены следующие случаи:

    1) дробно-линейное отображение вида $Az^{n} +B/z^{n} $, для которого случаи $n=2$, $4$, $n>1$, известны. На портрете множества Фату привлекают внимание характерные (для классического квадратичного отображения) фигурки <<пряничных человечков>>, показывающие короткопериодические режимы, находящиеся в море компоненты условно хаотической динамики;

    2) у множества Мандельброта при нестандартном положении параметра в показателе степени $z(t+1)\Leftarrow z(t)^{\mu } $ на эскизных расчетах обнаруживаются некие зубчатые структуры и облака точек, напоминающие пыль Кантора, не являющиеся букетами Кантора, характерными для экспоненциального отображения. В дальнейшем требуется детализация этих объектов со сложной топологией.

Страницы: следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.