Текущий выпуск Номер 7, 2024 Том 16

Все выпуски

Результаты поиска по 'функция распределения':
Найдено статей: 89
  1. Яковлева Т.В.
    Определение параметров сигнала и шума при анализе райсовских данных методом моментов низших нечетных порядков
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 717-728

    В работе развивается новый математический метод решения задачи совместного расчета параметров сигнала и шума в условиях статистического распределения Райса посредством метода моментов, основанного на анализе данных для начальных моментов 1-го и 3-го порядков случайной райсовской величины. Получена в явном виде система уравнений для искомых параметров сигнала и шума. В предельном случае малой величины отношения сигнала к шуму получены аналитические формулы, позволяющие рассчитать искомые параметры задачи без необходимости численного решения уравнений. Развитый в работе метод обеспечивает эффективное разделение информативной и шумовой компонент анализируемых данных в отсутствие каких-либо априорных предположений, лишь на основе обработки результатов выборочных измерений сигнала. Задача является значимой для целей обработки райсовских данных, в частности, в системах магнитно-резонансной визуализации, в системах ультразвуковой визуализации, при анализе оптических сигналов в системах дальнометрии, в радиолокации и т. д. Как показали результаты исследований, решение двухпараметрической задачи разработанным методом не приводит к увеличению объема требуемых вычислительных ресурсов по сравнению с решением однопараметрической задачи, решаемой в предположении априорной известности второго параметра. В работе приведены результаты компьютерного моделирования разработанного метода. Результаты численного расчета параметров сигнала и шума разработанным методом подтверждают его эффективность. Проведено сопоставление точности определения искомых параметров развитым в работе методом и ранее разработанным вариантом метода моментов, основанным на обработке измеренных данных для низших четных моментов анализируемого сигнала.

    Просмотров за год: 10. Цитирований: 1 (РИНЦ).
  2. Лоенко Д.С., Шеремет М.А.
    Численное моделирование естественной конвекции неньютоновской жидкости в замкнутой полости
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 59-72

    В настоящей работе рассматривался нестационарный процесс естественно-конвективного теплопереноса в замкнутой квадратной полости, заполненной неньютоновской жидкостью, при наличии локального изотермического источника энергии, который располагался на нижней стенке рассматриваемой области. Вертикальные границы считались изотермически охлаждающими, горизонтальные — полностью теплоизолированными. Характер поведения неньютоновской жидкости соответствовал степенному закону Оствальда–де-Вилла. Исследуемый процесс описывался нестационарными дифференциальными уравнениями в безразмерных преобразованных переменных «функция тока – завихренность – температура». Данная методика позволяет исключить поле давления из числа неизвестных параметров, а обезразмеривание позволяет обобщить полученные результаты на множество физических постановок. Сформулированная математическая модель с соответствующими граничными условиями решалась на основе метода конечных разностей. Алгебраическое уравнение для функции тока решалось методом последовательной нижней релаксации. Дискретные аналоги уравнений дисперсии завихренности и энергии решались методом прогонки. Разработанный численный алгоритм был детально протестирован на классе модельных задач и получил хорошее согласование с другими авторами. Также в ходе исследования был проведен анализ влияния сеточных параметров на структуру течения в полости, на основе которого была выбрана оптимальная размерность сетки.

    В результате численного моделирования нестационарных режимов естественной конвекции неньютоновской степенной жидкости в замкнутой квадратной полости с локальным изотермическим источником энергии был проведен анализ влияния характеризующих параметров: числа Рэлея в диапазоне 104–106, индекса степенного закона $n = 0.6–1.4$, а также положения нагревающего элемента на структуру течения и теплоперенос внутри полости. Анализ проводился на основе полученных распределений линий тока и изотерм в полости, а также на основе зависимостей среднего числа Нуссельта. В ходе работы установлено, что псевдопластические жидкости $(n < 1)$ интенсифицируют теплосъем с поверхности нагревателя. Увеличение числа Рэлея и центральное расположение нагревающего элемента также соответствуют охлаждению источника тепла.

  3. Кротов К.В., Скатков А.В.
    Оптимизация планирования выполнения пакетов заданий в многостадийных системах при ограничениях и формировании комплектов
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 917-946

    Современные методы комплексного планирования выполнения пакетов заданий в многостадийных системах характеризуются наличием ограничений на размерность решаемой задачи, невозможностью гарантированного получения эффективных решений при различных значениях ее входных параметров, а также невозможностью учета условия формирования комплектов из результатов и ограничения на длительности интервалов времени функционирования системы. Для решения задачи планирования выполнения пакетов заданий при формировании комплектов результатов и ограничении на длительности интервалов времени функционирования системы реализована декомпозиция обобщенной функции системы на совокупность иерархически взаимосвязанных подфункций. Применение декомпозиции позволило использовать иерархический подход для планирования выполнения пакетов заданий в многостадийных системах, предусматривающий определение решений по составам пакетов заданий на первом уровне иерархии, решений по составам групп пакетов заданий, выполняемых в течение временных интервалов ограниченной длительности, на втором уровне и расписаний выполнения пакетов на третьем уровне иерархии. С целью оценки оптимальности решений по составам пакетов результаты их выполнения, полученные в течение заданных временных интервалов, распределяются по комплектам. Для определения комплексных решений применен аппарат теории иерархических игр. Построена модель иерархической игры для принятия решений по составам пакетов, групп пакетов и расписаниям выполнения пакетов, представляющая собой систему иерархически взаимосвязанных критериев оптимизации решений. В модели учтены условие формирования комплектов из результатов выполнения пакетов заданий и ограничение на длительность интервалов времени ее функционирования. Задача определения составов пакетов заданий и групп пакетов заданий является NP-трудной, поэтому для ее решения требуется применение приближенных методов оптимизации. С целью оптимизации групп пакетов заданий реализовано построение метода формирования начальных решений по их составам, которые в дальнейшем оптимизируются. Также сформулирован алгоритм распределения по комплектам результатов выполнения пакетов заданий, полученных в течение временных интервалов ограниченной длительности. Предложен метод локальной оптимизации решений по составам групп пакетов, в соответствии с которым из групп исключаются пакеты, результаты выполнения которых не входят в комплекты, и добавляются пакеты, не включенные ни в одну из групп. Выполнена программная реализация рассмотренного метода комплексной оптимизации составов пакетов заданий, групп пакетов заданий и расписаний выполнения пакетов заданий из групп (в том числе реализация метода оптимизации составов групп пакетов заданий). С ее использованием проведены исследования особенностей рассматриваемой задачи планирования. Сформулированы выводы, касающиеся зависимости эффективности планирования выполнения пакетов заданий в многостадийных системах при введенных условиях от входных параметров задачи. Использование метода локальной оптимизации составов групп пакетов заданий позволяет в среднем на 60% увеличить количество формируемых комплектов из результатов выполнения заданий в пакетах из групп по сравнению с фиксированными группами (не предполагающими оптимизацию).

  4. Проведено математическое моделирование нестационарных режимов естественной конвекции в замкнутой пористой цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного теплообмена с внешней средой. Краевая задача математической физики, сформулированная на основе модели Дарси–Буссинеска в безразмерных переменных «функция тока – температура», реализована численно методом конечных разностей. Детально проанализировано влияние проницаемости пористой среды 10–5≤Da<∞, отношения толщины твердой оболочки к внутреннему радиусу цилиндра 0.1≤h/L≤0.3, относительного коэффициента теплопроводности 1≤λ1,2≤20 и безразмерного времени 0≤τ≤1000 как на локальные распределения изолиний функции тока и температуры, так и на интегральные комплексы, отражающие интенсивность конвективного течения и теплопереноса.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  5. Проведено численное исследование нестационарных режимов смешанной конвекции в открытом частично пористом горизонтальном канале при наличии тепловыделяющего элемента. Наружные поверхности горизонтальных стенок конечной толщины являлись адиабатическими. В канале находилась ньютоновская теплопроводная жидкость, вязкость которой зависит от температуры по экспоненцильному закону. Дискретный тепловыделяющий теплопроводный элемент расположен внутри нижней стенки канала. Температура жидкости равна температуре твердого скелета внутри пористой вставки, и расчеты ведутся в рамках модели теплового равновесия. Пористая вставка изотропна, однородна и проницаема для жидкости. Для моделирования пористой среды использована модель Дарси–Бринкмана. Математическая модель, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» на основе приближения Буссинеска, реализована численно с помощью метода конечных разностей. Уравнения дисперсии завихренности и энергии решались на основе локально-одномерной схемы А.А. Самарского. Диффузионные слагаемые аппроксимировались центральными разностями, конвективные — с использованием монотонной аппроксимации А.А. Самарского. Разностные уравнения решались методом прогонки. Разностное уравнение Пуассона для функции тока решалось отдельно, с применением метода последовательной верхней релаксации. Оптимальное значение параметра релаксации подбиралось на основе вычислительных экспериментов. Разработанная вычислительная модель была протестирована на множестве равномерных сеток, а также верифицирована путем сравнения полученных результатов при решении модельной задачи с данными других авторов.

    Численные исследования нестационарных режимов смешанной конвекции жидкости с переменной вязкостью в горизонтальном канале с тепловыделяющим источником были проведены при следующих значениях безразмерных параметров: $\mathrm{Pr} = 7.0$, $\varepsilon = 0.8$, $\mathrm{Gr} = 10^5$, $C = 0-1$, $10^{-5} < \mathrm{Da} < 10^{-1}$, $50 < \mathrm{Re} < 500$, $\delta = l/H = 0.6-3$. Все распределения изолиний функции тока и температуры, а также зависимости среднего числа Нуссельта и средней температуры были получены в стационарном режиме, когда наблюдается установление картины течения и теплопереноса. В результате анализа установлено, что введение пористой вставки позволяет интенсифицировать теплосъем с поверхности источника энергии. Увеличение размеров пористой ставки, а также использование рабочих сред с разными теплофизическими характеристиками приводят к снижению температуры в источнике энергии.

    Просмотров за год: 34.
  6. Шабанов А.Э., Петров М.Н., Чикиткин А.В.
    Многослойная нейронная сеть для определения размеров наночастиц в задаче лазерной спектрометрии
    Компьютерные исследования и моделирование, 2019, т. 11, № 2, с. 265-273

    Решение задачи лазерной спектрометрии позволяет определять размеры частиц в растворе по спектру интенсивности рассеянного света. В результате эксперимента методом динамического рассеяния света получается кривая интенсивности рассеяния, по которой необходимо определить, частицы каких размеров представлены в растворе. Экспериментально полученный спектр интенсивности сравнивается с теоретически ожидаемым спектром, который является кривой Лоренца. Основная задача сводится к тому, чтобы на основании этих данных найти относительные концентрации частиц каждого сорта, представленных в растворе. В статье представлен способ построения и использования нейронной сети, обученной на синтетических данных, для определения размера частиц в растворе в диапазоне 1–500 нм. Нейронная сеть имеет полносвязный слой из 60 нейронов с функцией активации RELU на выходе, слой из 45 нейронов и с аналогичной функцией активации, слой dropout и 2 слоя с количеством нейронов 15 и 1 (выход сети). В статье описано, как сеть обучалась и тестировалась на синтетических и экспериментальных данных. На синтетических данных метрика «среднеквадратичное отклонение» (rmse) дала значение 1.3157 нм. Экспериментальные данные были получены для размеров частиц 200 нм, 400 нм и раствора с представителями обоих размеров. Сравниваются результаты работы нейронной сети и классических линейных методов, основанных на применении различных регуляризаций за счет введения дополнительных параметров и применяемых для определения размера частиц. К недостаткам классических методов можно отнести трудность автоматического определения степени регуляризации: слишком сильная регуляризация приводит к тому, что кривые распределения частиц по размерам сильно сглаживаются, а слабая регуляризация дает осциллирующие кривые и низкую надежность результатов. В работе показано, что нейронная сеть дает хорошее предсказание для частиц с большим размером. Для малых размеров предсказание хуже, но ошибка быстро уменьшается с увеличением размера.

    Просмотров за год: 16.
  7. Гаспарян М.М., Самонов А.С., Сазыкина Т.А., Остапов Е.Л., Сакмаров А.В., Шайхатаров О.К.
    Решатель уравнения Больцмана на неструктурированных пространственных сетках
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 427-447

    Целью данной работы является создание достаточно универсальной вычислительной программы (решателя) кинетического уравнения Больцмана для моделирования течений разреженного газа в устройствах сложной формы. Подробно описывается структура решателя, а его эффективность демонстрируется на примере расчета современной конструкции многотрубочного насоса Кнудсена. Решение уравнения Больцмана выполняется на фиксированных пространственной и скоростной сетках с помощью метода расщепления по физическим процессам. Дифференциальный оператор переноса аппроксимируется методом конечных разностей. Вычисление интеграла столкновений производится на основе консервативного проекционного метода.

    Пространственная неструктурированная сетка строится с помощью внешнего генератора сеток и может включать в себя призмы, тетраэдры, гексаэдры и пирамиды. Сетка сгущается в областях течения с наибольшими градиентами рассчитываемых величин. Трехмерная скоростная сетка состоит из кубических ячеек равного объема.

    Большой объем вычислений требует эффективного распараллеливания алгоритма, что реализовано на основе методики Message Passing Interface (MPI). Передача информации от одного узла MPI к другому осуществляется как разновидность граничного условия — таким образом, каждый MPI узел может хранить только ту часть сетки, которая имеет отношение конкретно к нему.

    В результате получен график разности давлений в двух резервуарах, соединенных многотрубочным насосом Кнудсена в зависимости от числа Кнудсена, т. е. получена численными методами характеристика, ответственная за качество работы термомолекулярного микронасоса. Также показаны распределения давления, температуры и концентрации газа в установившемся состоянии внутри резервуаров и самого микронасоса.

    Корректность работы солвера проверяется на тестах с распределением температуры газа между двух нагретых до разной температуры пластинок, а также в тесте с сохранением общей массы газа.

    Корректность полученных данных для многотрубочного насоса Кнудсена проверяется на более точных скоростной и пространственной сетках, а также при использовании большего количества столкновений в интеграле столкновений за шаг.

    Просмотров за год: 13.
  8. Долуденко А.Н., Куликов Ю.М., Савельев А.С.
    Хаотизация течения под действием объемной силы
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 883-912

    В предлагаемой статье приводятся результаты аналитического и компьютерного исследования хаотической эволюции регулярного поля скорости, возникающего под действием крупномасштабной гармонической вынуждающей силы. Авторами получено аналитическое решение для функции тока течения и ее производных величин (скорости, завихренности, кинетической энергии, энстрофии и палинстрофии). Проведено численное моделирование эволюции течения с помощью пакета программ OpenFOAM (на основе модели несжимаемой среды), а также двух собственных реализаций, использующих приближение слабой сжимаемости (схемы КАБАРЕ и схемы МакКормака). Расчеты проводились на последовательности вложенных сеток с 642, 1282, 2562, 5122, 10242 ячейками для двух характерных (асимптотических) чисел Рейнольдса Rea, характеризующих ламинарную и турбулентную эволюцию течения соответственно. Моделирование показало, что разрушение аналитического решения происходит в обоих случаях. Энергетические характеристики течения обсуждаются на основе кривых энергии, а также скоростей диссипации. Для самой подробной сетки эта величина оказывается на несколько порядков меньше своего гидродинамического (вязкого) аналога. Разрушение регулярной структуры течения наблюдается для любого из численных методов, в том числе на поздних стадиях ламинарной эволюции, когда полученные распределения близки к аналитическим значениям. Можно предположить, что предпосылкой к развитию неустойчивости выступает ошибка, накапливаемая в процессе счета. Эта ошибка приводит к неравномерностям в распределении завихренности и, как следствие, к появлению вихрей различной интенсивности, взаимодействие которых приводит к хаотизации течения. Для исследования процессов производства завихренности мы использовали две интегральные величины, определяемые на ее основе, — интегральные энстрофию ($\zeta$) и палинстрофию $(P)$. Постановка задачи с периодическими граничными условиями позволяет установить простую связь между этими величинами. Кроме того, $\zeta$ может выступать в качестве меры вихреразрешающей способности численного метода, а палинстрофия определяет степень производства мелкомасштабной завихренности.

  9. Жихарев Я.М., Черемисин Ф.Г., Клосс Ю.Ю.
    Моделирование разделения смеси газов в многоступенчатом микронасосе, основанное на решении уравнения Больцмана
    Компьютерные исследования и моделирование, 2024, т. 16, № 6, с. 1417-1432

    В работе проводятся моделирование смеси газов в многокаскадном микронасосе и оценка его эффективности при разделении компонентов смеси. Рассматривается устройство в виде протяженного канала с последовательностью поперечно расположенных пластин, различие температур сторон которых приводит к радиометрическому течению газа внутри. Скорость течения газов зависит от их масс, что приводит к разделению смеси. Моделирование основывается на численном решении кинетического уравнения Больцмана, для чего используется схема расщепления, при которой поочередно осуществляются решения уравнений переноса и задач релаксации. Вычисление интеграла столкновений осуществляется с помощью консервативного проекционного метода, при использовании которого строго выполняются законы сохранения массы, импульса и энергии, и важное асимптотическое свойство — равенство интеграла от максвелловской функции нулю. Для решения уравнения переноса используются явная разностная схема первого порядка точности и TVD-схема второго порядка. Расчеты проводятся для смеси неона и аргона в модели твердых сфер с реальным отношением молекулярных диаметров и масс. Разработана программно-моделирующая среда, которая позволяет проводить расчеты как на персональных компьютерах, так и на многопроцессорных кластерах. Использование распараллеливания приводит к ускорению вычислений относительно последовательной версии и постоянству времени одной итерации для устройств разных размеров, что позволило моделировать системы с большим числом пластин. Подобраны геометрические размеры устройства, при которых разделения смеси оказывается наибольшим. Обнаружено, что величина разделения смеси, то есть отношение концентраций на концах устройства линейно зависит от числа каскадов в устройстве, что дает возможность оценить разделение для многокаскадных систем, компьютерное моделирование которых невозможно. Построены изображения и проведен анализ течений и распределений концентраций газов внутри устройства во время его работы. Показано, что устройства такого вида при достаточно большом числе пластин подходят для разделения газовых смесей, притом что они не имеют движущихся частей и, соответственно, достаточно просты в изготовлении и мало подвержены износу.

  10. Гибанов Н.С., Шеремет М.А.
    Влияние формы и размеров локального источника энергии на режимы конвективного теплопереноса в квадратной полости
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 271-280

    Проведен численный анализ влияния формы и размеров локального источника постоянной температуры на нестационарные режимы термогравитационной конвекции в квадратной полости с изотермическими вертикальными стенками. Рассматривался источник энергии прямоугольной, треугольной и трапециевидной формы. Краевая задача, сформулированная в безразмерных преобразованных переменных «функция тока – завихренность скорости – температура» в приближении Буссинеска, была реализована численно методом конечных разностей. Получены распределения изолиний функции тока и температуры, а также временные зависимости для среднего числа Нуссельта на поверхности источника энергии в широком диапазоне изменения определяющих параметров.

    Просмотров за год: 5. Цитирований: 7 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.