Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'устойчивое развитие':
Найдено статей: 41
  1. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

  2. Хазова Ю.А.
    Бегущие волныв параболической задаче с преобразованием поворота на окружности
    Компьютерные исследования и моделирование, 2017, т. 9, № 5, с. 705-716

    Оптические системы с двумерной обратной связью демонстрируют широкие возможности по исследованию процессов зарождения и развития диссипативных структур. Обратная связь позволяет воздействовать на динамику оптической системы посредством управляемого преобразования пространственных переменных, выполняемых призмами, линзами, динамическими голограммами и другими устройствами. Нелинейный интерферометр с зеркальным отражением поля в двумерной обратной связи является одной из наиболее простых оптических систем, в которых реализуется нелокальный характер взаимодействия световых полей.

    Математической моделью оптических систем с двумерной обратной связью является нелинейное параболическое уравнение с преобразованием поворота пространственной переменной и условиями периодичности на окружности.

    Исследуются вопросы бифуркации рождения стационарных структур типа бегущей волны, эволюции их форм при уменьшении бифуркационного параметра (коэффициента диффузии) и динамики их устойчивости при отходе от критического значения параметра бифуркации и дальнейшем его уменьшении. Впервые в качестве бифуркационного параметра был взят коэффициент диффузии.

    В работе используются метод центральных многообразий и метод Галёркина. На основе метода центральных многообразий доказана теорема о существовании, форме и устойчивости решения типа бегущей волны в окрестности бифуркационного значения коэффициента диффузии. Получено представление первой бегущей волны, рождающейся в результате бифуркации Андронова–Хопфа при переходе бифуркационного параметра через критическое значение. Согласно теореме о центральном многообразии первая бегущая волна рождается орбитально устойчивой.

    Поскольку доказанная теорема дает возможность исследовать рожденные решения только в окрестности критического значения бифуркационного параметра, то для изучения динамики изменений решения типа бегущей волны при отходе бифуркационного параметра в область надкритичности был использован формализм метода Галёркина. В соответствии с методом центральных многообразий составлена галёркинская аппроксимация приближенных решений поставленной задачи. При уменьшении параметра бифуркации и его переходе через критическое значение нулевое решение задачи теряет устойчивость колебательным образом. В результате от нулевого решения ответвляется периодическое решение типа бегущей волны. Эта волна рождается орбитально устойчивой. При дальнейшем уменьшении параметра и его прохождении через следующее критическое значение от нулевого решения в результате бифуркации Андронова–Хопфа рождается второе решение типа бегущей волны. Данная волна рождается неустойчивой, с индексом неустойчивости два.

    Численные расчеты с помощью пакета Mathematica показали, что применение метода Галёркина приводит к качественно и количественно правильным результатам. Полученные результаты хорошо согласуются с результатами, полученными другими авторами, и могут быть использованы для постановки экспериментов по изучению явлений в оптических системах с обратной связью.

    Просмотров за год: 11. Цитирований: 5 (РИНЦ).
  3. Крат Ю.Г., Потапов И.И.
    Движение влекомых наносов над периодическим дном
    Компьютерные исследования и моделирование, 2018, т. 10, № 1, с. 47-60

    Движение влекомых наносов по дну напорного канала может приводить к потере устойчивости донной поверхности, когда на дне канала возникают донные волны. Исследование процесса развития донных волн связано с возможностью определения характера движения влекомых наносов по дну периодической формы. Несмотря на большое внимание многих исследователей к данной проблеме, вопрос о развитии процесса донных волн остается открытым и в настоящее время. В значительной мере это связано с тем, что при анализе данного процесса многие исследователи используют в своих работах феноменологические формулы движения влекомых наносов. Полученные в таких моделях результаты позволяют лишь качественно оценить процесс развития донных волн. По этой причине представляет интерес проведение анализа развития донных волн с использованием аналитической модели движения влекомых наносов.

    В работе предложена двумерная профильная математическая русловая модель, позволяющая исследовать движение влекомых наносов над периодическим дном. Особенностью математической модели является возможность расчета расхода влекомых наносов по аналитической модели с реологией Кулона–Прандтля, учитывающей влияние уклонов поверхности дна, придонных нормальных и касательных напряжений на процесс движения донного материала. Показано, что при движении донного материла по дну периодической формы диффузионные и напорные расходы влекомых наносов являются разнонаправленными и доминирующими по отношению к транзитному расходу. Изучались влияния параметра перекошенности донной волны на вклад транзитного, диффузионного и напорного расходов в полный расход влекомых наносов. Выполнено сравнение полученных результатов с численными решениями других авторов для донной поверхности косинусоидальной формы.

    Просмотров за год: 9.
  4. Кащенко Н.М., Ишанов С.А., Зинин Л.В., Мациевский С.В.
    Численный метод решения двумерного уравнения переноса при моделировании ионосферы Земли на основе монотонизированной Z-схемы
    Компьютерные исследования и моделирование, 2020, т. 12, № 1, с. 43-58

    Целью работы является исследование конечно-разностной схемы второго порядка точности, которая создана на основе Z-схемы. Это исследование состоит в численном решении нескольких двумерных дифференциальных уравнений, моделирующих перенос несжимаемой среды.

    Одна из реальных задач, при решении которых возникают подобные уравнения, — это численное моделирование сильно нестационарных среднемасштабных процессов в земной ионосфере. Вследствие того, что процессы переноса в ионосферной плазме контролируются магнитным полем, в поперечном к магнитному полю направлении предполагается выполнение условия несжимаемости плазмы. По той же причине в продольном к магнитному полю направлении могут возникать достаточно высокие скорости тепло- и массопереноса.

    Актуальной задачей при ионосферном моделировании является исследование плазменных неустойчивостей различных масштабов, которые возникают прежде всего в полярной и экваториальной областях. При этом среднемасштабные неоднородности, имеющие характерные размеры 1–50 км, создают условия для развития мелкомасштабных неустойчивостей. Последние приводят к явлению F-рассеяния, которое существенно влияет на точность работы спутниковых систем позиционирования, а также других космических и наземных радиоэлектронных систем.

    Используемые для одновременного моделирования таких разномасштабных процессов разностные схемы должны иметь высокое разрешение. Кроме того, эти разностные схемы должны быть, с одной стороны, достаточно точными, а с другой стороны — монотонными. Причиной таких противоречивых требований является то, что неустойчивости усиливают погрешности разностных схем, особенно погрешности дисперсионного типа. Подобная раскачка погрешностей при численном решении обычно приводит к нефизическим результатам.

    При численном решении трехмерных математических моделей ионосферной плазмы используется следующая схема расщепления по физическим процессам: первый шаг расщепления осуществляет продольный перенос, второй шаг расщепления осуществляет поперечный перенос. Исследуемая в работе конечно-разностная схема второго порядка точности приближенно решает уравнения поперечного пере- носа. Эта схема строится с помощью нелинейной процедуры монотонизации Z-схемы, которая является одной из схем второго порядка точности. При этой монотонизации используется нелинейная коррекция по так называемым «косым разностям». «Косые разности» содержат узлы расчетной сетки, относящиеся к разным слоям времени.

    Исследования проводились для двух случаев. В первом случае компоненты вектора переноса были знакопостоянны, во втором — знакопеременны в области моделирования. Численно получены диссипативные и дисперсионные характеристики схемы для различных видов ограничивающих функций.

    Результаты численных экспериментов позволяют сделать следующие выводы.

    1. Для разрывного начального профиля лучшие свойства показал ограничитель SuperBee.

    2. Для непрерывного начального профиля при больших пространственных шагах лучше ограничитель SuperBee, а при малых шагах лучше ограничитель Koren.

    3. Для гладкого начального профиля лучшие результаты показал ограничитель Koren.

    4. Гладкий ограничитель F показал результаты, аналогичные Koren.

    5. Ограничители разного типа оставляют дисперсионные ошибки, при этом зависимости дисперсионных ошибок от параметров схемы имеют большую вариабельность и сложным образом зависят от параметров этой схемы.

    6. Во всех расчетах численно подтверждена монотонность рассматриваемой разностной схемы. Для одномерного уравнения численно подтверждено свойство неувеличения вариации для всех указанных функций-ограничителей.

    7. Построенная разностная схема при шагах по времени, не превышающих шаг Куранта, является монотонной и показывает хорошие характеристики точности для решений разных типов. При превышении шага Куранта схема остается устойчивой, но становится непригодной для задач неустойчивости, поскольку условия монотонности перестают в этом случае выполняться.

  5. Алпеева Л.Е., Цибулин В.Г.
    Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671

    Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  6. Малков С.Ю.
    Моделирование закономерностей мировой динамики
    Компьютерные исследования и моделирование, 2017, т. 9, № 3, с. 419-432

    В статье проведен анализ исторического процесса с использованием методов синергетики (науки о нелинейных развивающихся системах в природе и обществе), развитых в работах Д. С. Чернавского применительно к экономическим и социальным системам. Показано, что социальная самоорганизация в зависимости от условий приводит к формированию как обществ с сильной внутренней конкуренцией (Y-структуры), так и обществ кооперативного типа (Х-структуры). Y-структуры характерны для стран Запада, Х-структуры характерны для стран Востока. Показано, что в XIX и XX веках имело место ускоренное формирование и усиление Y-структур. Однако в настоящее время мировая система вошла в период серьезных структурных перемен в экономической, политической, идеологической сферах: доминирование Y-структур заканчивается. Рассмотрены возможные пути дальнейшего развития мировой системы, связанные с изменением режимов самоорганизации и ограничением внутренней конкуренции. Этот переход будет длительным и сложным. В этих условиях объективно будет возрастать ценность цивилизационного опыта России, на основе которого в ней была сформирована социальная система комбинированного типа. Показано, что в конечном итоге неизбежен переход от нынешнего доминирования Y-структур к абсолютно новой глобальной системе, устойчивость которой будет основана на новой идеологии, новой духовности (то есть новой «условной информации», по Д. С. Чернавскому), делающей разворот от принципов конкуренции к принципам сотрудничества.

    Просмотров за год: 17.
  7. Абделхафиз М.А., Цибулин В.Г.
    Моделирование анизотропной конвекции бинарной жидкости, насыщающей пористую среду
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 801-816

    В предположении анизотропии свойств жидкости и среды моделируется возникновение гравитационной конвекции в пористом прямоугольнике, насыщенном теплопроводной жидкостью с примесью и подогреваемом снизу. Рассматривается плоская задача на основе уравнений Дарси – Буссинеска для бинарной жидкости с учетом эффекта Соре. Устанавливаются условия, при которых система уравнений относительно функции тока, отклонений температуры и концентрации от равновесного состояния является косимметричной и возможно ответвление от механического равновесия непрерывного семейства стационарных движений.

    Показано, что в условиях существования косимметрии имеются подобласти параметров, для которых критические значения температурного и концентрационного чисел Рэлея находятся по явным формулам. Для случая монотонной неустойчивости механического равновесия выведены формулы критических чисел Рэлея и приведены результаты подтверждающих вычислений.

    Развита конечно-разностная дискретизация задачи второго порядка точности по пространственным переменным, сохраняющая косимметричность исследуемой системы. С помощью разработанной численной схемы проведен анализ устойчивости механического равновесия при различных комбинациях управляющих параметров.

    На плоскости температурного и концентрационного чисел Рэлея представлены нейтральные кривые устойчивости механического равновесия и рассчитаны участки колебательной неустойчивости. Установлена зависимость от параметров термодиффузии концентрационного числа Рэлея, при котором колебательная неустойчивость предшествует монотонной. В общей ситуации, когда не выполняются условия косимметрии, выведенные формулы критических чисел Рэлея могут быть использованы для оценки порогов возникновения конвекции.

    Просмотров за год: 27.
  8. Крат Ю.Г., Потапов И.И.
    Устойчивость дна в напорных каналах
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1061-1068

    В работе на основе предложенной ранее русловой модели решена одномерная задача устойчивости песчаного дна напорного канала. Особенностью исследуемой задачи является используемое оригинальное уравнение русловых деформаций, учитывающее влияние физико-механических и гранулометрических характеристик донного материала и неровности донной поверхности при русловом анализе. Еще одной особенностью рассматриваемой задачи является учет влияния не только придонного касательного, но и нормального напряжения при изучении русловой неустойчивости. Из решения задачи устойчивости песчаного дна для напорного канала получена аналитическая зависимость, определяющая длину волны для быстрорастущих донных возмущений. Выполнен анализ полученной аналитической зависимости, показано, что она обобщает ряд известных эмпирических формул: Коулмана, Шуляка и Бэгнольда. Структура полученной аналитической зависимости указывает на существование двух гидродинамических режимов, характеризуемых числом Фруда, при которых рост донных возмущений может сильно или слабо зависеть от числа Фруда. Учитывая природную стохастичность процесса движения донных волн и наличие области определения решения со слабой зависимостью от чисел Фруда, можно сделать вывод о том, что экспериментальное наблюдение за процессом развития движения донных волн в данной области должно приводить к получению данных, имеющих существенную дисперсию, что и происходит в действительности.

    Просмотров за год: 1. Цитирований: 2 (РИНЦ).
  9. Потапов И.И., Силакова Ю.Г.
    Исследование процесса роста амплитуды донных волн в реках и каналах
    Компьютерные исследования и моделирование, 2020, т. 12, № 6, с. 1339-1347

    Работа является теоретическим исследованием процесса развития донной неустойчивости в реках и каналах. На основе аналитической модели расхода влекомых наносов, учитывающей влияние уклонов донной поверхности, придонного давления и касательного напряжения на движение донного материала и аналитического решения, позволяющего определять придонные касательные и нормальные напряжения, возникающие при обтекании турбулентным потоком периодических длинных донных волн малой крутизны, сформулирована и решена задача определения скорости роста амплитуды для растущих донных волн. Полученное решение задачи позволяет определить характерное время роста донной волны, скорость роста донной волны и ее максимальную амплитуду в зависимости от физических и гранулометрических характеристик донного материала и гидравлических параметров водного потока. На примере развития периодической синусоидальной донной волны малой крутизны выполнена верификация решения, полученного для сформулированной задачи. Полученное аналитическое решение задачи позволяет определить скорость роста амплитуды донной волны от текущего значения ее амплитуды. Сравнение полученного решения с экспериментальными данными показало их хорошее качественное и количественное согласование.

  10. Макарова И.В., Шубенкова К.А., Маврин В.Г., Бойко А.Д.
    Особенности маршрутизации общественного транспорта в городах разных видов
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 381-394

    В статье представлена классификация городов с учетом планировочных особенностей и возможных транспортных решений для городов различных типов. Также обсуждаются примеры различных стратегий развития городского общественного транспорта в России и странах Европейского союза с сопоставлением их эффективности. В статье приводятся примеры влияния городского планирования на мобильность граждан. Для реализации сложных стратегических решений необходимо использовать микро- и макромодели, которые позволяют сравнивать ситуации «как есть» и «как будет» для прогнозирования последствий. Кроме того, авторы предлагают методику совершенствования маршрутной сети общественного транспорта и улично-дорожной сети, которая включает определение потребностей населения в трудовых и учебных корреспонденциях, идентификацию узких мест улично-дорожной сети, разработку имитационных моделей и выработку рекомендаций по результатам эксперимента на моделях, а также расчет эффективности, включающий расчет положительного социального эффекта, экономическую эффективность, повышение экологичности и устойчивости городской транспортной системы. Для обоснования предложенной методологии были построены макро- и микромодели исследуемого города с учетом пространственной планировки и других особенностей города. Таким образом, на примере города Набережные Челны показано, что использование нашей методологии может помочь улучшить ситуацию на дорогах за счет оптимизации сети автобусных маршрутов и дорожной инфраструктуры. Результаты показали, что при реализации предложенных решений можно уменьшить транспортную нагрузку на узкие места, количество перекрывающихся автобусных маршрутов, а также плотность движения.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.