Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'управление':
Найдено статей: 121
  1. Корчак А.Б.
    Контроль точности при ускоренном схемотехническом моделировании
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 365-370

    Разработан алгоритм ускоренного моделирования КМОП СБИС (Сверх Больших Интегральных Схем с Комплементарной логикой на транзисторах Металл-Окисел-Проводник) под управлением точности. Алгоритм обеспечивает возможность проведения параллельного числительного эксперимента в много процессорной вычислительной среде. Ускорение расчета осуществляется за счет применения блочно-матричной и структурной (DCCC) декомпозиций. Особенность подхода состоит в выборе моментов и способов обмена параметрами и в применении многоскоростных методов интегрирования в процессе расчета подсистем. Благодаря этому имеется возможность оценивать и контролировать погрешность по требуемым характеристикам.

    Цитирований: 1 (РИНЦ).
  2. Чуканов С.Н., Першина Е.Л.
    Формирование оптимального управления нелинейным динамическим объектом на основе модели Такаги–Сугено
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 51-59

    В работе рассмотрен алгоритм нечеткой системы управления существенно нелинейным динамическим объектом. Для решения нелинейной задачи оптимального управления предлагается использовать линейно-квадратичное регулирование (LQR — linear quadratic regulator) с моделью Такаги–Сугено (Takagi–Sugeno). Алгоритм может быть использован для проектирования систем оптимального управления детерминированными нелинейными объектами. Предложено использование алгоритма функционирования оптимальной системы управления для управления вращательным движением летательного аппарата.

    Просмотров за год: 2.
  3. Чуканов С.Н.
    Моделирование структуры сложной системы на основе оценивания меры взаимодействия подсистем
    Компьютерные исследования и моделирование, 2020, т. 12, № 4, с. 707-719

    В работе рассматривается использование определения меры взаимодействия между каналами при выборе конфигурации структуры системы управления сложными динамическими объектами. Приведены основные методы определения меры взаимодействия подсистем сложных систем управления на основе методов RGA (Relative Gain Array), Dynamic RGA, HIIA (Hankel Interaction Index Array), PM (Participation matrix). Задача проектирования структуры управления традиционно делится на выбор каналов ввода-вывода и выбор конфигурации управления. При выборе конфигурации управления простые конфигурации более предпочтительны, так как просты при проектировании, обслуживании и более устойчивы к сбоям в работе. Однако сложные конфигурации обеспечивают создание системы управления с более высокой эффективностью. Процессы в больших динамических объектах характеризуются высокой степенью взаимодействия между переменными процесса. Выбор структуры управления заключается в определении того, какие динамические соединения следует использовать для разработки системы управления. Когда структура выбрана, соединения могут быть использованы для конфигурирования системы управления. Для больших систем предлагается для выбора структуры управления предварительно группировать компоненты векторов входных и выходных сигналов исполнительных органов и чувствительных элементов в наборы, в которых количество переменных существенно уменьшается. Приводится количественная оценка децентрализации системы управления на основе минимизации суммы недиагональных элементов матрицы PM. Приведен пример оценки меры взаимодействия компонент сильно связанных подсистем и меры взаимодействия компонент слабосвязанных подсистем. Дана количественная оценка последствий пренебрежения взаимодействием компонент слабосвязанных подсистем. Рассмотрено построение взвешенного графа для визуализации взаимодействия подсистем сложной системы. В работе предложен метод формирования грамиана управляемости вектором выходных сигналов, инвариантный к преобразованиям вектора состояния. Приведен пример декомпозиции системы стабилизации компонент вектора угловой скорости летательного аппарата. Оценивание мер взаимного влияния процессов в каналах систем управления позволяет повысить надежность функционирования систем при учете использования аналитической избыточности информации с различных приборов, что позволяет снизить массовые и габаритные характеристики систем, а также потребление энергии. Методы оценивания меры взаимодействия процессов в подсистемах систем управления могут быть использованы при проектировании сложных систем, например систем управления движением, систем ориентации и стабилизации летательных аппаратов.

  4. Власов А.А., Пильгейкина И.А., Скорикова И.А.
    Методика формирования многопрограммного управления изолированным перекрестком
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 295-303

    Наиболее простым и востребованным практикой методом управления светофорной сигнализацией является предрассчитанное регулирование, когда параметры работы светофорного объекта рассчитываются заранее и затем активируются согласно расписанию. В работе предложена методика формирования сигнального плана, позволяющая рассчитать программы регулирования и установить период их активности. Подготовка исходных данных для проведения расчета включает формирование временного ряда суточной интенсивности движения с интервалом 15 минут. При проведении полевых обследований возможно отсутствие части измерений интенсивности движения. Для восполнения недостающих значений предложено использование кубической сплайн-интерполяции временного ряда. Следующем шагом методики является расчет суточного набора сигнальных планов. В работе приведены зависимости, позволяющие рассчитать оптимальную длительность цикла регулирования и разрешающих движение фаз и установить период их активности. Существующие системы управления движением имеют ограничения на количество используемых программ регулирования. Для сокращения количества сигнальных планов и определения периода их активности используется кластеризация методом $k$-средних в пространстве длительности транспортных фаз. В новом суточном сигнальном плане длительность фаз определяется координатами полученных центров кластеров, а периоды активности устанавливаются элементами, вошедшими в кластер. Апробация на числовом примере показала, что при количестве кластеров 10 отклонение оптимальной длительности фаз от центров кластеров не превышает 2 с. Для проведения оценки эффективности разработанной методики на примере реального пересечения со светофорным регулированием. На основе натурных обследований схемы движения и транспортного спроса разработана микроскопическая модель для программы SUMO (Simulation of Urban Mobility). Оценка эффективности произведена на основе потерь транспорта, оцениваемых затратами времени на передвижение. Имитационное моделирование многопрограммного управления сигналами светофора показало снижение времени задержки (в сравнении с однопрограммным управлением) на 20 %. Предложенная методика позволяет автоматизировать процесс расчета суточных сигнальных планов и установки времени их активности.

  5. Решитько М.А., Усов А.Б.
    Нейросетевой подход к исследованию задач оптимального управления
    Компьютерные исследования и моделирование, 2022, т. 14, № 3, с. 539-557

    В статье предлагается метод исследования задач оптимального управления с использованием нейронных сетей. Рассмотрение проводится на примере задачи контроля качества поверхностных вод. При моделировании системы контроля качества поверхностных вод используются теоретико-игровой и иерархический подходы. Исследуется случай динамической двухуровневой системы управления качеством поверхностных вод, включающий ведущего и нескольких ведомых. Рассмотрение ведется с точки зрения ведомых. В этом случае между ними возникает неантагонистическая игра, в которой строится равновесие Нэша. С математической точки зрения при этом решается задача оптимального управления при наличии фазовых ограничений. Для ее аналитического исследования в работе используется принцип максимума Понтрягина, на основе которого формулируются условия оптимальности. Для решения возникающих при этом систем дифференциальных уравнений используется обучаемая нейронная сеть прямого распространения (feedforward). Приводится обзор существующих методов решения подобных задач с помощью нейронных сетей и методов обучения нейронных сетей. Для оценки ошибки решения, получаемого с помощью нейронной сети, предлагается использовать метод анализа дефекта решения, адаптированный для нейронных сетей. Это позволяет получить количественную оценку ошибки численного решения. Приведены примеры использования нейросетевого подхода для решения модельной задачи оптимального управления и задачи контроля качества поверхностных вод. Полученные в этих примерах результаты сравниваются с точным решением и с результатами, полученными методом стрельбы. Во всех случаях величина ошибки оценивается методом анализа дефекта решения. Нейросетевым методом проводится также исследование системы контроля качества поверхностных вод для случаев, когда решение задачи другими методами получить не удалось (большой временной промежуток моделирования и случай нескольких агентов). В статье иллюстрируются возможность использования нейросетевого подхода для решения различных задач оптимального управления и дифференциальных игр, а также возможность количественной оценки точности решения. Полученные результаты численных экспериментов позволяют говорить о необходимости введения регулирующего органа для достижения устойчивого развития системы.

  6. Чуканов С.Н.
    Сравнение сложных динамических систем на основе топологического анализа данных
    Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 513-525

    В работе рассматривается возможность сравнения и классификации динамических систем на основе топологического анализа данных. Определение мер взаимодействия между каналами динамических систем на основе методов HIIA (Hankel Interaction Index Array) и PM (Participation Matrix) позволяет построить графы HIIA и PM и их матрицы смежности. Для любой линейной динамической системы может быть построен аппроксимирующий ориентированный граф, вершины которого соответствуют компонентам вектора состояния динамической системы, а дуги — мерам взаимного влияния компонент вектора состояния. Построение меры расстояния (близости) между графами различных динамических систем имеет важное значение, например для идентификации штатного функционирования или отказов динамической системы или системы управления. Для сравнения и классификации динамических систем в работе предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам, с весами ребер, соответствующими мерам взаимодействия между каналами динамической системы. На основе методов HIIA и PM определяются матрицы мер взаимодействия между каналами динамических систем. В работе приведены примеры формирования взвешенных ориентированных графов для различных динамических систем и оценивания расстояния между этими системами на основе топологического анализа данных. Приведен пример формирования взвешенного ориентированного графа для динамической системы, соответствующей системе управления компонентами вектора угловой скорости летательного аппарата, который рассматривается как твердое тело с главными моментами инерции. Метод топологического анализа данных, используемый в настоящей работе для оценки расстояния между структурами динамических систем, основан на формировании персистентных баркодов и функций персистентного ландшафта. Методы сравнения динамических систем на основе топологического анализа данных могут быть использованы при классификации динамических систем и систем управления. Применение традиционной алгебраической топологии для анализа объектов не позволяет получить достаточное количество информации из-за уменьшения размерности данных (в связи потерей геометрической информации). Методы топологического анализа данных обеспечивают баланс между уменьшением размерности данных и характеристикой внутренней структуры объекта. В настоящей работе используются методы топологического анализа данных, основанные на применении фильтраций Vietoris-Rips и Dowker для присвоения каждому топологическому признаку геометрической размерности. Для отображения персистентных диаграмм метода топологического анализа данных в гильбертово пространство и последующей количественной оценки сравнения динамических систем используются функции персистентного ландшафта. На основе построения функций персистентного ландшафта предлагаются сравнение графов динамических систем и нахождение расстояний между динамическими системами. Для этой цели предварительно формируются взвешенные ориентированные графы, соответствующие динамическим системам. Приведены примеры нахождения расстояния между объектами (динамическими системами).

  7. Ушаков А.О., Ганджа Т.В., Дмитриев В.М., Молоков П.Б.
    Компьютерная модель экстракционного реактора идеального смешения в формате метода компонентных цепей с неоднородными векторными связями
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 599-614

    Рассмотрены особенности метода компонентных цепей (МКЦ) при моделировании химико-технологических систем (ХТС) с учетом его практической значимости. Программно-алгоритмической реализацией МКЦ в настоящее время является комплекс программ компьютерного моделирования МАРС (моделирование и автоматический расчет систем). МАРС позволяет осуществлять разработку и анализ компьютерных моделей ХТС с заданными параметрами эксперимента. В ходе настоящей работы осуществлена разработка модели реактора идеального смешения с учетом физико-химических особенностей процесса экстракции урана в присутствии азотной кислоты и трибутилфосфата в среде моделирования МАРС. В качестве результатов представлены кинетические кривые концентрации урана, извлекаемого в органическую фазу. Исследована и подтверждена возможность использования МКЦ для описания и анализа сложных химико-технологических систем ядерно-топливного цикла, в том числе для экстракционных процессов. Использование полученных результатов планируется применять при разработке виртуальной лаборатории, которая будет включать основные аппараты химической промышленности, а также сложные технические управляемые системы (СТУС) на их основе и позволит приобрести широкий спектр профессиональных компетенций по работе с «цифровыми двойниками» реальных объектов управления, в том числе получить первоначальный опыт работы с основными аппаратами ядерной отрасли. Помимо непосредственной прикладной пользы, также предполагается, что успешная реализация отечественного комплекса программ компьютерного моделирования и технологий на основе полученных результатов позволит найти решения к проблемам организации национального технологического суверенитета и импортозамещения.

  8. Яковенко Г.Н.
    Управляемые системы в форме Бруновского: симметрии, управляемость
    Компьютерные исследования и моделирование, 2009, т. 1, № 2, с. 147-159

    Многие нелинейные системы с управлением неособенным преобразованием переменных {состояние-управление} приводятся к каноническому виду Бруновского. В каноническом виде решаются различные вопросы теории управления, затем обратной заменой переменных осуществляется возврат к исходным переменным. В работе на основе этой идеологии изучаются преобразования симметрии пространства {время-состояние-управление}.

    Просмотров за год: 2.
  9. Ветчанин Е.В., Тененев В.А.
    Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381

    Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.

    Просмотров за год: 2. Цитирований: 16 (РИНЦ).
  10. Эффективность производственного процесса непосредственно зависит от качества управления технологией, которая, в свою очередь, опирается на точность и оперативность обработки контрольно- измерительной информации. Разработка математических методов исследования системных связей и закономерностей функционирования и построение математических моделей с учетом структурных особенностей объекта исследований, а также написание программных продуктов для реализации данных методов являются актуальными задачами. Практика показала, что список параметров, имеющих место при исследовании сложного объекта современного производства, варьируется от нескольких десятков до нескольких сот наименований, причем степень воздействия каждого из факторов в начальный момент не ясна. Приступать к работе по непосредственному определению модели в этих условиях нельзя — объем требуемой информации может оказаться слишком велик, причем бóльшая часть работы по сбору этой информации будет проделана впустую из-за того, что степень влияния на параметры оптимизации большинства факторов из первоначального списка окажется пренебрежимо малой. Поэтому необходимым этапом при определении модели сложного объекта является работа по сокращению размерности факторного пространства. Большинство промышленных производств являются групповыми иерархическими процессами массового и крупносерийного производства, характеризующимися сотнями факторов. (Для примера реализации математических методов и апробации построенных моделей в основу были взяты данные Молдавского металлургического завода.) С целью исследования системных связей и закономерностей функционирования таких сложных объектов обычно выбираются несколько информативных параметров и осуществляется их выборочный контроль. В данной статье описывается последовательность приведения исходных показателей технологического процесса выплавки стали к виду, пригодному для построения математической модели с целью прогнозирования, внедрения новых видов стали и создание основы для разработки системы автоматизированного управления качеством продукции. В процессе преобразования выделяются следующие этапы: сбор и анализ исходных данных, построение таблицы слабокоррелированных параметров, сокращение факторного пространства с помощью корреляционных плеяд и метода весовых коэффициентов. Полученные результаты позволяют оптимизировать процесс построения модели многофакторного процесса.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.