Текущий выпуск Номер 2, 2024 Том 16

Все выпуски

Результаты поиска по 'температура':
Найдено статей: 99
  1. Булатов А.А., Сысоев А.А., Иудин Д.И.
    Моделирование инициации молнии на базе динамического графа
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 125-147

    Несмотря на многочисленные достижения современной науки, до сих пор остается нераскрытой проблема зарождения молниевого разряда в безэлектродном грозовом облаке, максимальная напряженность электрического поля в котором примерно на порядок меньше диэлектрической прочности воздуха. Хотя не вызывает сомнений тот факт, что развитие разряда начинается с появления в облаке положительных стримеров, развитие которых становится возможным при примерно вдвое меньших значениях электрического поля по сравнению с отрицательными, на настоящий момент остается неизученным вопрос о том, каким образом холодные слабопроводящие стримерные системы объединяются в горячий хорошо проводящий лидерный канал, способный к самостоятельному распространению за счет эффективной поляризации в относительно слабом внешнем поле. В данной работе представлена самоорганизующаяся транспортная модель, реализованная на примере формирования фрактального древа электрического разряда в грозовом облаке и направленная на численное моделирование процесса начальной стадии развития молниевого разряда. Среди инновационных особенностей нашего подхода, отсутствующих в других численных моделях развития молнии, можно выделитьот сутствие привязки элементов проводящей структуры графа к узлам пространственной решетки, высокое пространственно-временное разрешение и учет временной эволюции электрических параметров транспортных каналов. Кроме того, модельучи тывает известную из многочисленных экспериментов асимметрию полей развития положительных и отрицательных стримеров. В рамках используемого подхода результирующий хорошо проводящий лидерный канал формируется за счет коллективного эффекта объединения токов десятков тысяч взаимодействующих между собой стримеров, каждый из которых изначально обладает пренебрежимо малой проводимостью и температурой, не отличающейся от температуры окружающей среды. Модельное биполярное древо представляет собой направленный граф (имеет положительную и отрицательную части) и имеет морфологические и электро-динамические характеристики, промежуточные между лабораторной длинной искрой и развитой молнией. Модель имеет универсальный характер, что при необходимости позволяет использовать ее в рамках других задач, связанных с исследованием транспортных (в широком смысле слова) сетей.

  2. В работе исследуется влияние быстрого локального выделения тепла вблизи обтекаемой сверхзвуковым потоком газа (воздуха) поверхности на область отрыва, возникающую при быстром его повороте. Данная поверхность состоит из двух плоскостей, образующих при пересечении тупой угол, так что при обтекании этой поверхности сверхзвуковой поток газа поворачивается на положительный угол, что формирует косой скачок уплотнения, взаимодействующий с пограничным слоем и вызывающий отрыв потока. Быстрый локальный нагрев газа над обтекаемой поверхностью моделирует протяженный искровой разряд субмикросекундной длительности, пересекающий поток. Газ, нагретый в зоне разряда, взаимодействует с областью отрыва. Течение можно считать плоским, поэтому численное моделирование проводится в двумерной постановке. Численное моделирование проведено для ламинарного режима течения с использованием солвера sonicFoam пакета программ OpenFOAM.

    В работе описан способ построения двумерной расчетной сетки с использованием шестигранных ячеек. Выполнено исследование сеточной сходимости. Приводится методика задания начальных профилей параметров течения на входе в расчетную область, позволяющая сократить время счета при уменьшении количества расчетных ячеек. Описан способ нестационарного моделирования процесса быстрого локального нагрева газа, заключающегося в наложении дополнительных полей повышенных значений давления и температуры, вычисленных из величины энергии, вложенной в набегающий сверхзвуковой поток газа, на соответствующие поля величин, предварительно полученные в стационарном случае. Параметры энерговклада в поток, соответствующие параметрам процесса инициирования электрического разряда, а также параметры набегающего потока близки к экспериментальным величинам.

    При анализе данных численного моделирования получено, что быстрый локальный нагрев приводит к возникновению газодинамического возмущения (квазицилиндрической ударной волны и нестационарного завихренного течения), которое при взаимодействии с областью отрыва приводит к смещению точки отрыва вниз по потоку. В работе рассмотрен вопрос о влиянии энергии, затраченной на локальный нагрев газа, и положения места нагрева относительно точки отрыва на величину максимального ее смещения.

  3. Абакумов А.И., Израильский Ю.Г.
    Модельный способ оценки содержания хлорофилла в море на основании спутниковой информации
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 473-482

    На основе математическоймо дели динамики биомасс фитопланктона построен способ оценки содержания хлорофилла в районе моря с учетом его распределения по глубине. Модель построена на основе уравнения «реакция-диффузия», учитывает основные влияющие факторы: минеральное питание, освещенность и температуру. Используется спутниковая информация о поверхностном слое моря. Приведен пример расчетов для залива Петра Великого (Японское море).

    Просмотров за год: 5. Цитирований: 2 (РИНЦ).
  4. Проведен сравнительный анализ двух моделей пористой среды (Дарси и Бринкмана) на примере математического моделирования нестационарных режимов термогравитационной конвекции в пористой вертикальной цилиндрической полости с теплопроводной оболочкой конечной толщины в условиях конвективного охлаждения со стороны окружающей среды. Краевая задача математической физики, сформулированная в безразмерных переменных «функция тока — завихренность — температура», реализована численно неявным методом конечных разностей. Представлены результаты тестовых расчетов и влияния сеточных параметров, отражающие правомерность применения предлагаемого численного подхода. Установлены особенности класса сопряженных задач при использовании рассматриваемых моделей пористой среды.

    Просмотров за год: 1. Цитирований: 4 (РИНЦ).
  5. Пархоменко В.П.
    Анализ оптимальной по Парето эффективности предотвращения глобального потепления методами геоинженерии
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 1097-1108

    Проведенное исследование основано на сочетании трехмерной гидродинамической модели глобального климата, включая модель океана с реальными глубинами и конфигурацией континентов, модель эволюции морского льда и энерго-, влагобалансовую модель атмосферы. Концентрация аэрозоля от 2010 г. до 2100 г. рассчитывается как управляющий параметр для стабилизации среднегодовой температуры воздуха у поверхности земли. На основе расчетов предполагается, что выбросы серы от 2010 г. до 2100 г. изменяются линейно для первого сценария и квадратично — для второго роста СО2. Граница Парето исследована и визуализирована для двух параметров — среднеквадратичного отклонения атмосферной температуры для зимнего и летнего сезонов.

    Просмотров за год: 1. Цитирований: 3 (РИНЦ).
  6. Губайдуллин И.М., Язовцева О.С.
    Исследование усредненной модели окислительной регенерации закоксованного катализатора
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 149-161

    Статья посвящена построению и исследованию усредненной математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Окислительная регенерация является эффективным средством восстановления активности катализатора при покрытии его гранул коксовыми отложениями.

    Математическая модель указанного процесса представляет собой нелинейную систему обыкновенных дифференциальных уравнений, в которую включены кинетические уравнения для концентраций реагентов и уравнения для учета изменения температуры зерна катализатора и реакционной смеси в результате протекания неизотермических реакций и теплообмена между газом и слоем катализатора. Вследствие гетерогенности процесса окислительной регенерации часть уравнений отличается от стандартных кинетических и построена на основе эмпирических данных. В статье рассмотрена схема химического взаимодействия в процессе регенерации, на основе которой составлены уравнения материального баланса. В ней отражены непосредственное взаимодействие кокса и кислорода с учетом степени покрытия гранулы кокса углерод-водородным и углерод-кислородным комплексами, выделение монооксида и диоксида углерода в процессе горения, а также освобождение кислорода и водорода внутри зерна катализатора. При построении модели учитывается изменение радиуса, а следовательно, и площади поверхности коксовых гранул. Адекватность разработанной усредненной модели подтверждена анализом динамики концентраций веществ и температуры.

    В статье приведен численный эксперимент для математической модели окислительной регенерации алюмокобальтмолибденового катализатора гидрокрекинга. Эксперимент проведен с использованием метода Кутты–Мерсона. Этот метод относится к методам семейства Рунге–Кутты, но разработан для решения жестких систем обыкновенных дифференциальных уравнений. Результаты вычислительного эксперимента визуализированы.

    В работе приведена динамика концентраций веществ, участвующих в процессе окислительной регенерации. На основании соответствия полученных результатов физико-химическим законам сделан вывод об адекватности построенной математической модели. Проанализирован разогрев зерна катализатора и выделение монооксида углерода при изменении радиуса зерна для различных степеней начальной закоксованности. Дано описание полученных результатов.

    В заключении отмечены основные результаты, приведены примеры задач, для решения которых может быть применена разработанная математическая модель.

  7. Демидов А.С., Демидова И.В.
    О допустимой интенсивности лазерного излучения в оптической системе и о технологии измерения коэффициента поглощения его мощности
    Компьютерные исследования и моделирование, 2021, т. 13, № 5, с. 1025-1044

    Лазерное повреждение прозрачных твердых тел является основным фактором, ограничивающим выходную мощность лазерных систем. Для лазерных дальномеров наиболее вероятной причиной разрушения элементов оптической системы (линз, зеркал), реально, как правило, несколько запыленных, является не оптический пробой в результате лавинной ионизации, а такое тепловое воздействие на пылинку, осевшую на элементе оптической системы (ЭОС), которое приводит к ее возгоранию. Именно возгорание пылинки инициирует процесс повреждения ЭОС.

    Рассматриваемая модель этого процесса учитывает нелинейный закон теплового излучения Стефана – Больцмана и бесконечное тепловое воздействие периодического излучения на ЭОСи пылинку. Эта модель описывается нелинейной системой дифференциальных уравнений для двух функций: температуры ЭОСи температуры пылинки. Доказывается, что в силу накапливающего воздействия периодического теплового воздействия процесс достиже- ния температуры возгорания пылинки происходит практически при любых априори возможных изменениях в этом процессе теплофизических параметров ЭОСи пылинки, а также коэффициентов теплообмена между ними и окружающим их воздухом. Усреднение этих параметров по переменным, относящимся как к объему, так и к поверхностям пылинки и ЭОС, корректно при указанных в работе естественных ограничениях. А благодаря рассмотрению задачи (включая численные результаты) в безразмерных единицах измерения, охвачен весь реально значимый спектр теплофизических параметров.

    Проведенное тщательное математическое исследование соответствующей нелинейной системы дифференциальных уравнений впервые позволило для общего случая теплофизических параметров и характеристик теплового воздействия периодического лазерного излучения найти формулу для значения той допустимой интенсивности излучения, которая не приводит к разрушению ЭОСв результате возгорания пылинки, осевшей на ЭОС. Найденное в работе для общего случая теоретическое значение допустимой интенсивности в частном случае данных лазерного комплекса обсерватории в г. Грассе (на юге Франции) практически соответствует полученному там экспериментальному значению.

    Наряду с решением основной задачи получена в качестве побочного результата формула для коэффициента поглощения мощности лазерного излучения элементом оптической системы, выраженная в терминах четырех безразмерных параметров: относительной интенсивности лазерного излучения, относительной освещенности ЭОС, относительного коэффициента теплоотдачи от ЭОСк окружающему его воздуху и относительной установившейся температуры ЭОС.

  8. Моторин А.А., Ступицкий Е.Л.
    Физический анализ и математическое моделирование параметров области взрыва, произведенного в разреженной ионосфере
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 817-833

    В работе выполнен физический и численный анализ динамики и излучения продуктов взрыва, образующихся при проведении российско-американского эксперимента в ионосфере с использованием взрывного генератора на основе гексогена и тротила. Основное внимание уделяется анализу взаимосвязи излучения возмущенной области с динамикой процессов взрывчатого вещества и плазменной струи на поздней стадии. Проанализирован подробный химический состав продуктов взрыва и определены начальные концентрации наиболее важных молекул, способных излучать в инфракрасном диапазоне спектра, и приведены их излучательные константы. Определены начальная температура продуктов взрыва и показатель адиабаты. Проанализирован характер взаимопроникновения атомов и молекул сильно разреженной ионосферы в сферически расширяющееся облако продуктов. Разработана приближенная математическая модель динамики продуктов взрыва в условиях подмешивания к ним разреженного воздуха ионосферы и рассчитаны основные термодинамические характеристики системы. Показано, что на время 0,3–3 с происходит существенное повышение температуры разлетающейся смеси в результате ее торможения. Для анализа и сравнения на основе лагранжевого подхода разработан численный алгоритм решения двухобластной газодинамической задачи, в которой продукты взрыва и фоновый газ разделены контактной границей. Требовалось выполнение специальных условий на контактной границе при ее движении в покоящемся газе. В данном случае существуют определенные трудности в описании параметров продуктов взрыва вблизи контактной границы, что связано с большим различием в размерах массовых ячеек продуктов взрыва и фона из-за перепада плотности на 13 порядков. Для сокращения времени расчета данной задачи в области продуктов взрыва применялась неравномерная расчетная сетка. Расчеты выполнялись с различными показателями адиабаты. Получены результаты, наиболее важным из которых является температура, хорошо согласуется с результатами, полученными по методике, приближенно учитывающей взаимопроникновение. Получено поведение во времени коэффициентов излучения ИК-активных молекул в широком диапазоне спектра. Данное поведение качественно согласуется с экспериментами по ИК-свечению разлетающихся продуктов взрыва.

  9. Огородникова О.М., Бородин Е.М., Гудин А.А.
    Компьютерное исследование инструмента для изготовления проволоки
    Компьютерные исследования и моделирование, 2014, т. 6, № 6, с. 983-989

    В данной работе средствами программы DEFORM-2D исследовано напряженное состояние инструмента при волочении упрочненного сплава Pt–Ni эквиатомного состава при комнатной температуре. Рассмотрены различные варианты геометрии алмазного инструмента при неизменных габаритных размерах оправы. Обоснована принципиальная возможность снизить жесткость волоки без изменения параметров технологического процесса.

    Просмотров за год: 1.
  10. Радюк А.Г., Титлянов А.Е., Скрипаленко М.М.
    Моделирование температурного поля воздушных фурм доменных печей
    Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 117-125

    Проведено компьютерное моделирование динамики нагрева воздушной фурмы доменной печи с помощью вычислительной среды конечно-элементного анализа DEFORM-2D. Исследовано влияние теплоизолирующей вставки, установленной в дутьевой канал с воздушным зазором и без зазора, а также газотермического покрытия на температурное поле воздушной фурмы доменной печи. Результаты моделирования показали значительное влияние теплоизолирующей вставки в дутьевой канал и воздушного зазора, отделяющего ее от внутреннего стакана, на температурное поле фурмы. При наличии вставки наблюдается градиент температуры по ее толщине до 540–555 °С, причем максимального значения температура вставки достигает на поверхности со стороны дутьевого канала. В то же время температура внутреннего стакана снижается на 35–40 °С по сравнению с фурмой без вставки. При наличии вставки с воздушным зазором градиент температуры вставки по ее толщине снижается до 160–250 °С по сравнению с вариантом без воздушного зазора, причем максимальное значение температуры поверхности вставки со стороны дутьевого канала также увеличивается. Температура внутреннего стакана также снижается еще на 15–20 °С по сравнению с вариантом без воздушного зазора. Однако наблюдается резкий градиент температуры воздушного зазора по его толщине до 760 °С из-за низкой теплопроводности воздуха. При наличии газотермического покрытия максимальная температура нагрева торца рыльной части снизилась до 326 °С, а максимальный градиент температуры по его толщине также снизился до 67 °С по сравнению с вариантом без покрытия. С помощью программного комплекса DEFORM-2D создана модель, имитирующая прогар фурмы вследствие контака с жидким чугуном. Показано, что через 40 с контакта с чугуном температура на поверхности рыльной части со стороны воды достигает 1050 °С, а через 100 с — 1060 °С, что практически равносильно прогару.

    Просмотров за год: 7.
Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.