Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'стохастическое моделирование':
Найдено статей: 44
  1. Зенюк Д.А.
    Стохастическое моделирование химических реакций в субдиффузионной среде
    Компьютерные исследования и моделирование, 2021, т. 13, № 1, с. 87-104

    В последние десятилетия активно развивается теория аномальной диффузии, объединяющая различные транспортные процессы, в которых характерное среднеквадратичное рассеяние растет со временем по степенному закону, а не линейно, как для нормальной диффузии. Так, к примеру, диффузия жидкостей в пористых телах, перенос зарядов в аморфных полупроводниках и молекулярный транспорт в вязких средах демонстрируют аномальное «замедление» по сравнению со стандартной моделью.

    Удобным инструментом исследования таких процессов является прямое стохастическое моделирование. В работе описана одна из возможных схем такого рода, в основе которой лежит процесс восстановления с временами ожидания, имеющими степенную асимптотику. Аналитические построения показывают тесную связь между рассмотренным классом случайных процессов и уравнениями с производными нецелого порядка. Этот подход легко можно распространить ( соответствующий алгоритм представлен в тексте) на системы, в которых, помимо транспорта, возможны химические реакции. Актуальность исследований в этой области продиктована тем, что точный вид интегро-дифференциальных уравнений, описывающих химическую кинетику в системах с аномальной диффузией, остается пока предметом дискуссии.

    Поскольку рассматриваемый класс случайных процессов не обладает марковским свойством, здесь возникают принципиально новые проблемы по сравнению с моделированием химических реакций при нормальной диффузии. Главная из них заключается в способе, которым определяется, какие молекулы должны «погибнуть» в ходе реакции. Поскольку точная схема, отслеживающая каждую возможную комбинацию реактантов, неприемлема с вычислительной точки зрения из-за слишком большого числа таких комбинаций, было предложено несколько простых эвристических процедур. Серия вычислительных экспериментов показала, что результаты весьма чувствительны к выбору одной из этих эвристик.

  2. Башкирцева И.А., Перевалова Т.В., Ряшко Л.Б.
    Метод стохастической чувствительности в анализе динамических трансформаций в модели «две жертвы – хищник»
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1343-1356

    Данная работа посвящена исследованию проблемы моделирования и анализа сложных колебательных режимов, как регулярных, так и хаотических, в системах взаимодействующих популяций в присутствии случайных возмущений. В качестве исходной концептуальной детерминированной модели рассматривается вольтерровская система трех дифференциальных уравнений, описывающая динамику популяций жертв двух конкурирующих видов и хищника. Данная модель учитывает следующие ключевые биологические факторы: естественный прирост жертв, их внутривидовую и межвидовую конкуренцию, вымирание хищников в отсутствие жертв, скорость выедания жертв хищником, прирост популяции хищника вследствие выедания жертв, интенсивность внутривидовой конкуренции в популяции хищника. В качестве бифуркационного параметра используется скорость роста второй популяции жертв. На некотором интервале изменения этого параметра система демонстрирует большое разнообразие динамических режимов: равновесных, колебательных и хаотических. Важной особенностью этой модели является мультистабильность. В данной работе мы фокусируемся на изучении параметрической зоны тристабильности, когда в системе сосуществуют устойчивое равновесие и два предельных цикла. Такая биритмичность в присутствии случайных возмущений порождает новые динамические режимы, не имеющие аналогов в детерминированном случае. Целью статьи является детальное изучение стохастических явлений, вызванных случайными флуктуациями скорости роста второй популяции жертв. В качестве математической модели таких флуктуаций мы рассматриваем белый гауссовский шум. Методами прямого численного моделирования решений соответствующей системы стохастических дифференциальных уравнений выявлены и описаны следующие феномены: однонаправленные стохастические переходы с одного цикла на другой; триггерный режим, вызванный переходами между циклами; индуцированный шумом переход с циклов на равновесие, отвечающее вымиранию популяции хищника и второй жертвы. В статье представлены результаты анализа этих явлений с помощью показателей Ляпунова, выявлены параметрические условия переходов от порядка к хаосу и от хаоса к порядку. Для аналитического исследования таких вызванных шумом многоэтапных переходов были применены техника функций стохастической чувствительности и метод доверительных областей. В статье показано, как этот математический аппарат позволяет спрогнозировать интенсивность шума, приводящего к качественным трансформациям режимов стохастической популяционной динамики.

  3. Беляев А.В.
    Стохастические переходы от порядка к хаосу в метапопуляционной модели с миграцией
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 959-973

    Данная работа посвящена исследованию проблемы моделирования и анализа динамических режимов, как регулярных, так и хаотических, в системах связанных популяций в присутствии случайных возмущений. В качестве исходной детерминированной популяционной модели рассматривается дискретная модель Рикера. В работе исследуется динамика двух популяций, связанных миграцией. Миграция пропорциональна разнице между плотностями двух популяций с коэффициентом связи, который отвечает за силу миграционного потока. Изолированные популяционные подсистемы, не учитывающие миграцию и моделируемые отображением Рикера, демонстрируют различные динамические режимы: равновесный, периодический и хаотический. В данной работе в качестве бифуркационного параметра используется коэффициент связи, а также фиксируются параметры естественного прироста популяций, при которых одна изп одсистем находится в равновесном режиме, а во второй преобладает хаотический режим. Связывание двух популяций посредством миграции порождает новые динамические режимы, не наблюдавшиеся в изолированной модели. Целью данной статьи является анализ динамических режимов корпоративной динамики при вариации интенсивности перетоков между популяционными подсистемами. В статье представлен бифуркационный анализа ттракторов детерминированной модели двух связанных популяций, выявлены зоны моно- и бистабильности, даны примеры регулярных и хаотических аттракторов. Основной акцент данной работы сделан на сравнении устойчивости динамических режимов к случайным возмущениям в коэффициенте интенсивности миграции. Методами прямого численного моделирования выявлены и описаны индуцированные шумом переходы с периодического аттрактора на хаотический. В статье представлены результаты анализа стохастических явлений с помощью показателя Ляпунова. Показано, что в рассматриваемой модели существует зона изменения бифуркационного параметра, при котором даже с увеличением интенсивности случайных возмущений не происходит переход от порядка к хаосу. Для аналитического исследования вызванных шумом переходов применены техника функции стохастической чувствительности и метод доверительных областей. В работе показано, как с помощью этого математического аппарата можно предсказать критическую интенсивность шума, вызывающую трансформацию периодического режима в хаотический.

  4. Екатеринчук Е.Д., Ряшко Л.Б.
    Анализ стохастических аттракторов квадратичной дискретной популяционной модели с запаздыванием
    Компьютерные исследования и моделирование, 2015, т. 7, № 1, с. 145-157

    В работе рассматривается квадратичная дискретная модель популяционной динамики с запаздыванием под воздействием случайных возмущений. Анализ стохастических аттракторов модели проводится с помощью методов прямого численного моделирования и техники функций стохастической чувствительности. Показана деформация вероятностных распределений случайных состояний вокруг устойчивых равновесий и циклов при изменении параметров. Продемонстрировано явление индуцированных шумом переходов в зоне дискретных циклов.

    Просмотров за год: 3. Цитирований: 1 (РИНЦ).
  5. Степанцов М.Е.
    Дискретная математическая модель системы «власть–общество–экономика» на основе клеточного автомата
    Компьютерные исследования и моделирование, 2016, т. 8, № 3, с. 561-572

    Данная работа посвящена модификации ранее предлагавшегося автором дискретного варианта модели А. П. Михайлова «власть–общество». Эта модификация учитывает социально-экономическое развитие системы и коррупцию в ней по аналогии с непрерывной моделью «власть–общество–экономика–коррупция», но имеет в своей основе стохастический клеточный автомат, описывающий динамику распределения власти в иерархии. Новая версия модели построена путем введения в пространство состояний клетки ранее предлагавшегося клеточного автомата переменных, соответствующих численности населения, объему экономического производства, объему основных производственных фондов и уровню коррупции. Структура социально-экономических зависимостей в системе заимствована из модели Солоу и непрерывной детерминированной модели «власть–общество–экономика–коррупция», однако особенностью новой модели является ее гибкость, позволяющая рассматривать в ее рамках региональные различия во всех параметрах социально-экономического развития, различные модели производства и динамики народонаселения, а также транспортные связи между регионами. Построена имитационная система, включающая три уровня властной иерархии, пять регионов и 100 муниципалитетов, при помощи которой проведен ряд вычислительных экспериментов. В ходе этого исследования получены результаты, указывающие на изменение характера динамики распределения власти при повышении уровня коррупции. Если в отсутствие коррупции (аналогично предыдущей версии модели) распределение власти в иерархии асимптотически стремится к одному из стационарных состояний, то при наличии высокого уровня коррупции объем власти в системе испытывает нерегулярные колебательные изменения и лишь в дальнейшем также сходится к стационарному состоянию. Данные результаты можно содержательно интерпретировать как снижение стабильности властной иерархии при усилении коррупции.

    Просмотров за год: 8. Цитирований: 1 (РИНЦ).
  6. Лукьянцев Д.С., Афанасьев Н.Т., Танаев А.Б., Чудаев С.О.
    Численно-аналитическое моделирование гравитационного линзирования электромагнитных волн в случайно-неоднородной космической плазме
    Компьютерные исследования и моделирование, 2024, т. 16, № 2, с. 433-443

    Для интерпретации данных измерений астрофизических прецизионных инструментов нового поколения разработан аппарат численно-аналитического моделирования характеристик распространения электромагнитных волн в хаотической космической плазме с учетом эффектов гравитации. Задача распространения волн в искривленном (римановом) пространстве решена в евклидовом пространстве путем введения эффективного показателя преломления вакуума, выраженного через потенциал тяготения. Задавая различные модели плотности распределения массы астрофизических объектов и решая уравнение Пуассона, можно рассчитать гравитационный потенциал и вычислить эффективный показатель преломления вакуума. В предположении аддитивности вкладов различных объектов в общее гравитационное поле предложена приближенная модель эффективного показателя преломления. Считая пространственные масштабы показателя преломления много больше длины волны, расчет характеристик электромагнитных волн в поле тяготения астрофизических объектов проводится в приближении геометрической оптики. В основу численно-аналитического аппарата моделирования траекторных характеристик волн положены лучевые дифференциальные уравнения в форме Эйлера. Хаотические неоднородности космической плазмы заданы моделью пространственной корреляционной функции показателя преломления. Расчеты рефракционного рассеяния волн выполнены в приближении метода возмущений. Получены интегральные выражения для статистических моментов боковых отклонений лучей в картинной плоскости наблюдателя. С помощью аналитических преобразований интегралы для моментов сведены к системе обыкновенных дифференциальных уравнений первого порядка для совместного численного расчета средних и среднеквадратичных отклонений лучей. Приведены результаты численно-аналитического моделирования траекторной картины распространения электромагнитных волн в межзвездной среде с учетом воздействий полей тяготения космических объектов и рефракционного рассеяния волн на неоднородностях показателя преломления окружающей плазмы. На основе результатов моделирования сделана количественная оценка условий стохастического замывания эффектов гравитационного линзирования электромагнитных волн в различных частотных диапазонах. Показано, что рабочие частоты метрового диапазона длин волн представляют собой условную низкочастотную границу для наблюдений эффекта гравитационного линзирования в стохастической космической плазме. Предложенный аппарат численно-аналитического моделирования можно использовать для анализа структуры электромагнитного излучения квазаров, прошедшего группу галактик.

  7. Зенюк Д.А., Малинецкий Г.Г., Фаллер Д.С.
    Имитационная модель коррупции в иерархических системах
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 321-329

    Предложена имитационная модель коррупционного поведения в иерархических системах, учитывающая индивидуальные стратегии отдельных элементов и позволяющая описывать коллективное поведение достаточно больших групп. Были рассмотрены зависимости различных характеристик системы, таких как уровень коррумпированности и доля коррупционеров в иерархии, от управляющих параметров. Численный анализ позволил исследовать эффективность различных антикоррупционных стратегий.

    Просмотров за год: 8. Цитирований: 11 (РИНЦ).
  8. Захаров А.П., Брацун Д.А.
    Синхронизации циркадианных ритмов в масштабах гена, клетки и всего организма
    Компьютерные исследования и моделирование, 2013, т. 5, № 2, с. 255-270

    В работе выделяется три характерных масштаба описания биосистемы: микроскопический (размер гена), мезоскопический (размер клетки) и макроскопический (размер организма). Для каждого случая обсуждается подход к моделированию циркадианных ритмов на примере предложенной ранее модели с запаздыванием. На уровне гена использовалось стохастическое описание. Показана устойчивость механизма ритмов по отношению к флуктуациям. На мезоскопическом уровне предложено детерминистское описание в рамках пространственно-распределенной модели. Обнаружен эффект групповой синхронизации колебаний в клетках. Макроскопические эффекты исследованы в рамках дискретной модели, описывающей коллективное поведение большого числа клеток. Обсуждается вопрос о сшивании результатов, полученных на разных уровнях описания. Проводится сравнение с экспериментальными данными.

    Просмотров за год: 1. Цитирований: 8 (РИНЦ).
  9. Аптуков А.М., Брацун Д.А., Люшнин А.В.
    Моделирование поведения паникующей толпы в многоуровневом разветвленном помещении
    Компьютерные исследования и моделирование, 2013, т. 5, № 3, с. 491-508

    Предлагается модель коллективного поведения толпы, покидающей замкнутое помещение. Модель основывается на методах молекулярной динамики, учитывающей действие как физических, так и социально-психологических сил. Впервые предлагается алгоритм расчета для сложно разветвленных помещений. Для этого у каждого индивида формируется план выхода из помещения, который стохастически трансформируется в процессе эволюции. Алгоритм включает в себя предварительное разбиение пространства на комнаты, выход из которых индивиды выбирают в соответствии со своим распределением вероятности. Модель калибруется с помощью данных, появившихся в результате пожара в ночном клубе «Хромая лошадь» (Пермь, 2009 г.) Алгоритм оформлен как Java-программа конечного пользователя. Предполагается, что программа может помочь тестировать здания на предмет их безопасности для людей.

    Просмотров за год: 7. Цитирований: 10 (РИНЦ).
  10. Серков Л.А., Красных С.С.
    Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684

    В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.