Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'стохастические процессы':
Найдено статей: 35
  1. От редакции
    Компьютерные исследования и моделирование, 2021, т. 13, № 6, с. 1097-1100
  2. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 695-696
  3. От редакции
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1217-1219
  4. От редакции
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1099-1101
  5. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 5-10
  6. От редакции
    Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 821-823
  7. В работе развивается иерархический метод математического и компьютерного моделирования интервально-стохастических тепловых процессов в сложных электронных системах различного назначения. Разработанная концепция иерархического структурирования отражает как конструктивную иерархию сложной электронной системы, так и иерархию математических моделей процессов теплообмена. Тепловые процессы, учитывающие разнообразные физические явления в сложных электронных системах, описываются системами стохастических, нестационарных и нелинейных дифференциальных уравнений в частных производных, и в силу этого их компьютерное моделирование наталкивается на значительные вычислительные трудности даже с применением суперкомпьютеров. Иерархический метод позволяет избежать указанных трудностей. Иерархическая структура конструкции электронной системы в общем случае характеризуется пятью уровнями: 1 уровень — активные элементы ЭС (микросхемы, электро-, радиоэлементы); 2 уровень — электронный модуль; 3 уровень — панель, объединяющая множество электронных модулей; 4 уровень — блок панелей; 5 уровень — стойка, установленная в стационарном или подвижном помещении. Иерархия моделей и моделирования стохастических тепловых процессов строится в порядке, обратном иерархической структуре конструкции электронной системы, при этом моделирование интервально-стохастических тепловых процессов осуществляется посредством получения уравнений для статистических мер. Разработанный в статье иерархический метод позволяет учитывать принципиальные особенности тепловых процессов, такие как стохастический характер тепловых, электрических и конструктивных факторов при производстве, сборке и монтаже электронных систем, стохастический разброс условий функционирования и окружающей среды, нелинейные зависимости от температуры факторов теплообмена, нестационарный характер тепловых процессов. Полученные в статье уравнения для статистических мер стохастических тепловых процессов представляют собой систему 14-ти нестационарных нелинейных дифференциальных уравнений первого порядка в обыкновенных производных, решение которых легко реализуется на современных компьютерах существующими численными методами. Рассмотрены результаты применения метода при компьютерном моделировании стохастических тепловых процессов в электронной системе. Иерархический метод применяется на практике при тепловом проектировании реальных электронных систем и создании современных конкурентоспособных устройств.

    Просмотров за год: 3.
  8. Математическое и компьютерное моделирование тепловых процессов в технических системах, проводимое в настоящее время, основано на допущении, согласно которому все параметры, определяющие тепловые процессы, полностью и однозначно известны и определены, то есть являются детерминированными. Между тем практика показывает, что параметры, определяющие тепловые процессы, носят неопределенный интервально стохастический характер, что, в свою очередь, обусловливает интервально стохастический характер тепловых процессов в технической системе. Это означает, что реальные значения температуры каждого элемента в технической системе будут случайным образом распределены внутри интервалов своего изменения. Поэтому детерминированный подход к моделированию тепловых процессов, при котором получаются конкретные значения температур элементов, не позволяет адекватно рассчитывать температурные распределения в технических системах. Интервально стохастический характер параметров, определяющих тепловые процессы, обусловливается тремя группами факторов: (a) статистическим технологическим разбросом параметров элементов при изготовлении и сборке системы; (b) случайным характером факторов, обусловленных функционированием технической системы (флуктуациями токов, напряжений, мощностями потребления, температурами и скоростями потоков охлаждающей жидкости и среды внутри системы; (c) случайностью параметров окружающей среды (температурой, давлением, скоростью). Интервально стохастическая неопределенность определяющих факторов в технических системах является неустранимой, поэтому пренебрежение ею приводит к ошибкам при проектировании технических систем. В статье развивается метод, позволяющий моделировать нестационарные нелинейные интервально стохастические тепловые процессы в технических и, в частности, электронных системах при интервальной неопределенности определяющих параметров. Метод основан на получении и последующем решении уравнений для нестационарных статистических мер (математических ожиданий, дисперсий, ковариаций) распределений температуры в технической системе при заданных интервалах изменения и статистических мерах определяющих параметров. Рассмотрено применение разработанного метода к моделированию интервально стохастического теплового процесса в конкретной электронной системе.

    Просмотров за год: 15. Цитирований: 6 (РИНЦ).
  9. Абакумов А.И., Израильский Ю.Г.
    Стабилизирующая роль структуры рыбной популяции в условиях промысла при случайных воздействиях среды обитания
    Компьютерные исследования и моделирование, 2017, т. 9, № 4, с. 609-620

    Исследуется влияние промысла на структурированную рыбную популяцию в случайным образом меняющихся условиях среды обитания. Параметры популяции соответствуют массовым видам пелагических рыб дальневосточных морей северо-западной части Тихого океана (минтай, сельдь, сардина). В различных частях Мирового океана обитают похожие виды рыб. В качестве основного признака принимается различие особей по размеру. Это легко измеряемая в промысловых условиях характеристика, она достаточно хорошо определяет основные свойства особей: возраст, половозрелость, другие морфологические и физиологические особенности. Флуктуации внешней среды оказывают существенное влияние на особей в ранних стадиях развития, во взрослом состоянии наблюдающиеся изменения во внешней среде слабо влияют на жизнедеятельность особей. Характеристики промысла выбираются оптимальными с точки зрения дохода от него. Основной управляющей характеристикой промысла являются промысловые усилия. Зависимость дохода от количества промысловых усилий выбрана квадратичной в части затрат от промысла, что соответствует экономическим представлениям о росте затрат при увеличении объемов производства. Модельное исследование показывает, что структура популяции обеспечивает повышенную стабильность популяции. В процессе роста особей и их выбывания из-за естественной смертности сглаживаются колебания плотности численности, возникающие из-за сильного влияния на особей флуктуаций среды обитания на ранних стадиях развития. Сглаживающую роль играет диффузионная составляющая процессов роста. В свою очередь, промысел обладает сглаживающим воздействием по отношению к изменениям (в том числе и стохастическим) среды обитания, существенно влияющим на обилие молоди и последующую динамику обилия популяции рыб. В сравнении с оптимальным переменным по интенсивности промыслом исследован постоянный по интенсивности режим промысла. При этом оказалось, что в динамичных условиях среды и стохастической динамике численности пополнения существует постоянное по времени промысловое усилие, по эффективности близкое к оптимальному переменному промыслу. Это означает, что постоянный или слабо меняющийся по количеству промысловых усилий промысел может оказаться весьма эффективным с точки зрения дохода.

    Просмотров за год: 6. Цитирований: 2 (РИНЦ).
  10. Богомолов С.В.
    Стохастическая формализация газодинамической иерархии
    Компьютерные исследования и моделирование, 2022, т. 14, № 4, с. 767-779

    Математические модели газовой динамики и ее вычислительная индустрия, на наш взгляд, далеки от совершенства. Мы посмотрим на эту проблематику с точки зрения ясной вероятностной микромодели газа из твердых сфер, опираясь как на теорию случайных процессов, так и на классическую кинетическую теорию в терминах плотностей функций распределения в фазовом пространстве; а именно, построим сначала систему нелинейных стохастических дифференциальных уравнений (СДУ), а затем обобщенное случайное и неслучайное интегро-дифференциальное уравнение Больцмана с учетом корреляций и флуктуаций. Ключевыми особенностями исходной модели являются случайный характер интенсивности скачкообразной меры и ее зависимость от самого процесса.

    Кратко напомним переход ко все более грубым мезо-макроприближениям в соответствии с уменьшением параметра обезразмеривания, числа Кнудсена. Получим стохастические и неслучайные уравнения, сначала в фазовом пространстве (мезомодель в терминах СДУ по винеров- ским мерам и уравнения Колмогорова – Фоккера – Планка), а затем в координатном пространстве (макроуравнения, отличающиеся от системы уравнений Навье – Стокса и систем квазигазодинамики). Главным отличием этого вывода является более точное осреднение по скорости благодаря аналитическому решению стохастических дифференциальных уравнений по винеровской мере, в виде которых представлена промежуточная мезомодель в фазовом пространстве. Такой подход существенно отличается от традиционного, использующего не сам случайный процесс, а его функцию распределения. Акцент ставится на прозрачности допущений при переходе от одного уровня детализации к другому, а не на численных экспериментах, в которых содержатся дополнительные погрешности аппроксимации.

    Теоретическая мощь микроскопического представления макроскопических явлений важна и как идейная опора методов частиц, альтернативных разностным и конечно-элементным.

Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.