Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'сеть':
Найдено авторов: 1
  1. Ллойд С. (Lloyd S.)
Найдено статей: 141
  1. Дорн Ю.В., Шитиков О.М.
    Идентификация парадокса Браесса в модели стабильной динамики
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 35-51

    В работе исследуется поиск неэффективных ребер в модели стабильной динамики Нестрова–де Пальмы (2003). Для этой цели мы доказываем несколько общих теорем о свойствах равновесия, в том числе о том, что условие равенства стоимостей для всех используемых маршрутов может быть распространено на все пути, задействующие ребра из равновесных маршрутов. В работе показывается, что стандартная постановка задачи о поиске ребер, удаление которых приводит к уменьшению стоимости проезда для всех участников, не имеет практического смысла, так как одно и то же ребро может быть как эффективным, так и неэффективным (в зависимости от загрузки сети). В работе мы вводим понятие неэффективного ребра, опираясь на чувствительность суммарных издержек водителей к издержкам на ребре. В работе приводятся алгоритм поиска неэффективных ребер и результаты численных экспериментов для транспортной сети города Анахайм.

  2. Небаба С.Г., Марков Н.Г.
    Сверточные нейронные сети семейства YOLO для мобильных систем компьютерного зрения
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 615-631

    Работа посвящена анализу известных классов моделей сверточных нейронных сетей и исследованию выбранных из них перспективных моделей для детектирования летающих объектов на изображениях. Под детектированием объектов (англ. — Object Detection) здесь понимаются обнаружение, локализация в пространстве и классификация летающих объектов. Комплексное исследование выбранных перспективных моделей сверточных нейронных сетей проводится с целью выявления наиболее эффективных из них для создания мобильных систем компьютерного зрения реального времени. Показано, что наиболее приемлемыми для детектирования летающих объектов на изображениях с учетом сформулированных требований к мобильным системам компьютерного зрения реального времени и, соответственно, к лежащим в их основе моделям сверточных нейронных сетей являются модели семейства YOLO, причем наиболее перспективными следует считать пять моделей из этого семейства: YOLOv4, YOLOv4-Tiny, YOLOv4-CSP, YOLOv7 и YOLOv7-Tiny. Для обучения, валидации и комплексного исследования этих моделей разработан соответствующий набор данных. Каждое размеченное изображение из набора данных включает от одного до нескольких летающих объектов четырех классов: «птица», «беспилотный летательный аппарат самолетного типа», «беспилотный летательный аппарат вертолетного типа» и «неизвестный объект» (объекты в воздушном пространстве, не входящие в первые три класса). Исследования показали, что все модели сверточных нейронных сетей по скорости детектирования объектов на изображении (по скорости вычисления модели) значительно превышают заданное пороговое значение, однако только модели YOLOv4-CSP и YOLOv7, причем только частично, удовлетворяют требованию по точности детектирования (классификации) летающих объектов. Наиболее сложным для детектирования классом объектов является класс «птица». При этом выявлено, что наиболее эффективной по точности классификации является модель YOLOv7, модель YOLOv4-CSP на втором месте. Обе модели рекомендованы к использованию в составе мобильной системы компьютерного зрения реального времени при условии увеличения в созданном наборе данных числа изображений с объектами класса «птица» и дообучения этих моделей с тем, чтобы они удовлетворяли требованию по точности детектирования летающих объектов каждого из четырех классов.

  3. Васенин И.М., Шрагер Э.Р., Крайнов А.Ю., Палеев Д.Ю., Лукашов О.Ю., Костеренко В.Н.
    Математическое моделирование нестационарных процессов вентиляции сети выработок угольной шахты
    Компьютерные исследования и моделирование, 2011, т. 3, № 2, с. 155-163

    Представлена математическая модель для расчета нестационарных процессов вентиляции сети выработок угольной шахты. Приведены результаты расчетов процесса вентиляции тупиковой выработки вентилятором местного проветривания и нестационарных аэродинамических процессов при реверсировании вентилятора главного проветривания в модельной сети выработок шахты.

    Цитирований: 12 (РИНЦ).
  4. Губанов С.М., Крайнов А.Ю.
    Численное моделирование охлаждения емкостей для десублимации паров
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 383-388

    Представлена математическая модель для расчета охлаждения емкостей для десублимации паров охлажденным воздухом, подаваемым к ним по сети трубопроводов. Приведены результаты расчетов процесса охлаждения двух приемных емкостей в блоке из четырех. Представлена картина течения охлаждающего воздуха в сети трубопроводов.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  5. Калинин И.Н., Глухарев К.К.
    Исследование интегральных характеристик перекрестков при помощи микроскопических моделей транспортных потоков
    Компьютерные исследования и моделирование, 2014, т. 6, № 4, с. 523-534

    Рассматривается проблема применимости микроскопического моделирования транспортных потоков к анализу достаточно больших фрагментов сетей на примере модели дискретного потока с безопасной дистанцией. Вводится понятие интегральных характеристик перекрестков и предлагается методика получения интегральных характеристик на основе данных численных экспериментов по моделированию потоков на заданном перекрестке. Методика применяется к кольцевому коммутатору с Т-образными перекрестками, анализируются полученные характеристики.

    Просмотров за год: 4. Цитирований: 7 (РИНЦ).
  6. Дударов С.П., Диев А.Н., Федосова Н.А., Кольцова Э.М.
    Моделирование свойств конструкционного композитного материала, армированного углеродными нанотрубками, с использованием перцептронных комплексов
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 253-262

    Использование алгоритмов, основанных на нейронных сетях, может оказаться неэффективным при малых объемах экспериментальных данных. Авторы статьи рассматривают решение данной проблемы на примере моделирования свойств керамического композита, армированного углеродными нанотрубками, с помощью перцептронного комплекса. Такой подход позволил получить математическое описание объекта исследования при минимальном объеме и неполноте исходной информации, полученной в ходе экспериментов (объем необходимой экспериментальной выборки уменьшился в 2–3.3 раза). В статье рассмотрены различные варианты структур перцептронных комплексов. Выявлено, что наиболее подходящей структурой обладает перцептронный комплекс с проскоком двух входных переменных. Относительная ошибка составила всего 6%. Выбранный перцептронный комплекс показал свою эффективность для предсказания свойств керамического композита. Относительные ошибки по выходным компонентам составили 0.3%, 4.2%, 0.4%, 2.9% и 11.8%.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  7. Хоружников С.Э., Грудинин В.А., Садов О.Л., Шевель А.Е., Каирканов А.Б.
    Предварительное изучение передачи больших данных по компьютерной сети
    Компьютерные исследования и моделирование, 2015, т. 7, № 3, с. 421-427

    Передача больших данных по компьютерной сети — это важная и неотъемлемая операция в прошлом, настоящем и в любом обозримом будущем. Существует несколько методов передачи данных по глобальной компьютерной сети (Интернет) с помощью ряда инструментов. В этой статье рассматривается передача данных из одной точки Интернета в другую точку Интернета в основном на большие расстояния: многие тысячи километров. В статье представлен анализ нескольких бесплатных систем передачи больших данных. Подчеркиваются наиболее важные архитектурные особенности и предлагается идея использования технологии ПКС на базе протокола Openflow для улучшения процесса передачи данных по нескольким параллельным каналам связи.

    Просмотров за год: 4.
  8. Холодов Я.А., Алексеенко А.Е., Холодов А.С., Васильев М.О., Мишин В.Д.
    Разработка, калибровка и верификация модели движения трафика в городских условиях. Часть II
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1205-1219

    Целью данной работы является обобщение макроскопических гидродинамических моделей второго порядка, описывающих автомобильное движение, с помощью алгоритма построения адекватного реальным измерениям уравнения состояния — зависимости давления от плотности транспортного потока, получаемого эмпирическим образом для каждого отдельного участка транспортной сети с использованием данных транспортных детекторов. Доказано, что именно вид уравнения состояния, замыкающего систему модельных уравнений и полученного из экспериментально наблюдаемого вида фундаментальной диаграммы — зависимости интенсивности транспортного потока от его плотности, полностью определяет все свойства любой феноменологической модели. Проверка работоспособности предложенного подхода проводилась с использованием численных расчетов, путем проведения вычисленных экспериментов на типичных данных, предоставляемых системой PeMS (http://pems.dot.ca.gov/), таких как моделирование движения трафика на заданном участке транспортной сети автострады I-580 в Калифорнии.

    Просмотров за год: 3.
  9. Евин И.А., Комаров В.В., Попова М.С., Марченко Д.К., Самсонова А.Ю.
    Дорожные сети городов
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 775-786

    Улично-дорожная сеть является основой инфраструктуры любой урбанистической территории. В данной статье сравниваются структурные характеристики (коэффициент сетчатости, коэффициент кластеризации) дорожных сетей центра Москвы (старая Москва), сформированных в результате самоорганизации, и сети дорог вблизи Ленинского проспекта (послевоенная Москва), которая формировалась в процессе централизованного планирования. Данные для построения дорожных сетей в виде первичных графов взяты из интернет-ресурса OpenStreetMap, позволяющего точно идентифицировать координаты перекрестков. По вычисленным характеристикам в зарубежных публикациях найдены города, дорожные сети которых имеют сходные с этими двумя районами Москвы структуры. С учетом двойственного представления дорожных сетей центров Москвы и Петербурга, изучались информационно-когнитивные свойства навигации по этим туристическим районам двух столиц. При построении двойственного графа исследуемых районов не принимались во внимание различия в типах дорог (одностороннее или двусторонне движение и т. п.). То есть построенные двойственные графы являются неориентированным. Поскольку дорожные сети в двойственном представлении описываются степенным законом распределения вершин по числу ребер (являются безмасштабными сетями), вычислены показатели степеней этих распределений. Показано, что информационная сложность двойственного графа центра Москвы превышает когнитивный порог в 8.1 бит, а этот же показатель для центра Петербурга ниже этого порога. Это объясняется тем, что дорожная сеть центра Петербурга создавалась на основе планирования и потому более проста для навигации. В заключение, с использованием методов статистической механики (метод расчета статистических сумм) для дорожных сетей некоторых российских городов, вычислялась энтропия Гиббса. Обнаружено, что с ростом размеров дорожных сетей их энтропия уменьшается. Обсуждаются задачи изучения эволюции сетей городской инфраструктуры различной природы (сети общественного транспорта, снабжения, коммуникации и т. д.), что позволит более глубоко исследовать и понять фундаментальные закономерности процесса урбанизации.

    Просмотров за год: 3.
  10. В данной работе представлены результаты экспериментальной проверки некоторых вопросов, касающихся практического использования методов преодоления катастрофической забывчивости нейронных сетей. Проведено сравнение двух таких современных методов: метода эластичного закрепления весов (EWC, Elastic Weight Consolidation) и метода ослабления скоростей весов (WVA, Weight Velocity Attenuation). Разобраныих преимущества и недостатки в сравнении друг с другом. Показано, что метод эластичного закрепления весов (EWC) лучше применять в задачах, где требуется полностью сохранять выученные навыки на всех задачах в очереди обучения, а метод ослабления скоростей весов (WVA) больше подходит для задач последовательного обучения с сильно ограниченными вычислительными ресурсами или же когда требуется не точное сохранение всех навыков, а переиспользование репрезентаций и ускорение обучения от задачи к задаче. Проверено и подтверждено интуитивное предположение, что ослабление метода WVA необходимо применять к оптимизационному шагу, то есть к приращениям весов нейронной сети, а не к самому градиенту функции потерь, и это справедливо для любого градиентного оптимизационного метода, кроме простейшего стохастического градиентного спуска (SGD), для которого оптимизационный шаг и градиент функции потерь пропорциональны. Рассмотрен выбор оптимальной функции ослабления скоростей весов между гиперболической функцией и экспонентой. Показано, что гиперболическое убывание более предпочтительно, так как, несмотря на сравнимое качество при оптимальных значениях гиперпараметра метода WVA, оно более устойчиво к отклонениям гиперпараметра от оптимального значения (данный гиперпараметр в методе WVA обеспечивает баланс между сохранением старых навыков и обучением новой задаче). Приведены эмпирические наблюдения, которые подтверждают гипотезу о том, что оптимальное значение гиперпараметра не зависит от числа задач в очереди последовательного обучения. Следовательно, данный гиперпараметр может подбираться на небольшом числе задач, а использоваться — на более длинных последовательностях.

Страницы: « первая предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.