Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'сглаживающий полулокальный сплайн':
Найдено статей: 2
  1. Федосова А.Н., Силаев Д.А.
    Математическое моделирование изгиба круговой пластинки с применением $S$-сплайнов
    Компьютерные исследования и моделирование, 2015, т. 7, № 5, с. 977-988

    Настоящая работа посвящена применению теории недавно разработанных полулокальных сглаживающих сплайнов, или $S$-сплайнов высоких степеней, к решению задач теории упругости. $S$-сплайн — кусочно-полиномиальная функция, коэффициенты полиномов которой определяются из двух условий: первая часть коэффициентов определяется условиями гладкой склейки, остальные определяются методом наименьших квадратов. Мы рассмотрим, каким образом могут быть применены сплайны 7-ой степени класса $C^4$ при решении бигармонического уравнения на круге.

    Просмотров за год: 4.
  2. Силаев Д.А.
    Полулокальные сглаживающие S-сплайны
    Компьютерные исследования и моделирование, 2010, т. 2, № 4, с. 349-357

    Настоящая работа посвящена периодическим и непериодическим полулокальным сглаживающим сплайнам или S-сплайнам класса Cp, состоящим из полиномов степени n.
    Первые p + 1 коэффициентов каждого полинома задаются значениями предыдущего полинома и его p первых производных в точке склейки, остальные np коэффициентов при старших производных полинома определяются методом наименьших квадратов. Эти условия дополняются или начальными условиями (непериодический случай), или условием периодичности сплайн-функции на отрезке определения. В работе выписана система линейных уравнений, определяющих коэффициенты полиномов, составляющих сплайн. Матрица системы имеет блочный вид. Доказаны теоремы существования и единственности. Показано, что сходимость сплайнов к исходной функции зависит от величин собственных значений матрицы устойчивости. Приведены примеры устойчивых S-сплайнов.

    Просмотров за год: 1. Цитирований: 6 (РИНЦ).

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.