Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'популяционные модели':
Найдено статей: 32
  1. Немчинова А.В.
    Признаки стохастической детерминированности автогенной сукцессии лесных экосистем в марковских моделях
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 255-265

    В статье описывается метод моделирования хода сукцессии лесных экосистем до климаксовой стадии с помощью построения марковской цепи. Показаны возможности метода устанавливать закономерности ходов сукцессии в собственных временах формирования лесных экосистем. В отличие от традиционных методов моделирования сукцессии на основе смен типов растительности, за переходные стадии разрабатываемой модели приняты варианты сформированности вертикальной структуры лесных сообществ и их насыщенности позднесукцессионными видами. Длительность сукцессионных ходов из любого состояния устанавливается не в абсолютных временны́х единицах, а рассчитывается по средним числам шагов до попадания в климакс в единой временнóй шкале. Выявлено свойство восстанавливающейся растительности, определенное как признак стохастической детерминированности хода автогенной сукцессии. Приведены свидетельства того, что ход и темп лесной сукцессии стохастически детерминированы внутренними особенностями пространственной и популяционной организации сообществ.

    Просмотров за год: 2. Цитирований: 2 (РИНЦ).
  2. Башкирцева И.А., Бояршинова П.В., Рязанова Т.В., Ряшко Л.Б.
    Анализ индуцированного шумом разрушения режимов сосуществования в популяционной системе «хищник–жертва»
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 647-660

    Работа посвящена проблеме анализа близости популяционной системы к опасным границам, при пересечении которых в системе разрушается устойчивое сосуществование взаимодействующих популяций. В качестве причины такого разрушения рассматриваются случайные возмущения, неизбежно присутствующие в любой живой системе. Это исследование проводится на примере известной модели взаимодействия популяций хищника и жертвы, учитывающей как стабилизирующий фактор конкуренции хищника за отличные от жертвы ресурсы, так и дестабилизирующий фактор насыщения хищника. Для описания насыщения хищника используется трофическая функция Холлинга второго типа. Динамика системы исследуется в зависимости от коэффициента, характеризующего насыщение хищника, и коэффициента конкуренции хищника за отличные от жертвы ресурсы. В работе дается параметрическое описание возможных режимов динамики детерминированной модели, исследуются локальные и глобальные бифуркации и выделяются зоны устойчивого сосуществования популяций в равновесном и осцилляционном режимах. Интересной математической особенностью данной модели, впервые рассмотренной Базыкиным, является глобальная бифуркация рождения цикла из петли сепаратрисы. В работе исследуется воздействие шума на равновесный и осцилляционный режимы сосуществования популяций хищника и жертвы. Показано, что увеличение интенсивности случайных возмущений может привести к значительным деформациям этих режимов вплоть до их разрушения. Целью данной работы является разработка конструктивного вероятностного критерия близости этой стохастической системы к опасным границам. Основой предлагаемого математического подхода является техника функций стохастической чувствительности и метод доверительных областей — доверительных эллипсов, окружающих устойчивое равновесие, и доверительных полос вокруг устойчивого цикла. Размеры доверительных областей пропорциональны интенсивности шума и стохастической чувствительности исходных детерминированных аттракторов. Геометрическим критерием выхода популяционной системы из режима устойчивого сосуществования является пересечение доверительных областей и соответствующих сепаратрис детерминированной модели. Эффективность данного аналитического подхода подтверждается хорошим соответствием теоретических оценок и результатов прямого численного моделирования.

    Просмотров за год: 14. Цитирований: 4 (РИНЦ).
  3. Топаж А.Г., Абрамова А.В., Толстопятов С.Е.
    Дискретные модели популяционной динамики: достоинства, проблемы и обоснование
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 267-284

    Работа посвящена анализу достоинств, недостатков и обоснований применимости дискретных моделей в динамике популяций. Под дискретизацией в общем смысле понимается замена непрерывных величин их дискретными аналогами, то есть сведение задачи от непрерывных к перечислимым множествам. Рассмотрены прецеденты использования временной, пространственной и структурной дискретизации в типичных задачах математической экологии и совершена попытка оценить степень адекватности и границы применимости соответствующих моделей.

    Просмотров за год: 6. Цитирований: 6 (РИНЦ).
  4. Алпеева Л.Е., Цибулин В.Г.
    Косимметричный подход к анализу формирования пространственных популяционных структур с учетом таксиса
    Компьютерные исследования и моделирование, 2016, т. 8, № 4, с. 661-671

    Рассматривается математическая модель, описывающая конкуренцию за неоднородный ресурс двух близкородственных видов на одномерном ареале. Распространение популяций определяется диффузией и направленной миграцией, а рост подчиняется логистическому закону. Исследуются решения соответствующей начально-краевой задачи для нелинейных уравнений параболического типа с переменными коэффициентами (функция ресурса, параметры роста, диффузии и миграции). Для анализа формирования популяционных структур применяется подход на основе теории косимметричных динамических систем В. И. Юдовича. Аналитически получены условия на параметры системы, при выполнении которых у системы имеется нетривиальная косимметрия. В численном эксперименте подтверждено возникновение непрерывного семейства стационарных решений при выполнении условий существования косимметрии. Расчетная схема основана на конечно-разностной дискретизации по пространственной переменной с использованием интегро-интерполяционного метода и интегрировании по времени методом Рунге–Кутты. Далее численно исследовано влияние параметров диффузии и миграции на пространственно-временные сценарии развития популяций. В окрестности многообразия, соответствующего косимметрии задачи, рассчитаны нейтральные кривые диффузионных параметров, отвечающих границам устойчивости решений с одной популяцией. Для ряда значений параметров миграции и функций ресурса с одним и двумя максимумами построены карты областей параметров, которые соответствуют различным сценариям сосуществования и вытеснения видов. В частности, найдены области параметров, при которых выживание того или иного вида определяется условиями начального размещения. Отмечено, что реализуемая при этом динамика может быть нетривиальна: после начального снижения плотностей обоих видов наблюдается последующий рост одной популяции и убывание другой. Проведенный анализ показал, что области диффузионных параметров, отвечающих различным сценариям формирования популяционных структур, группируются вблизи линий, соответствующих косимметрии рассматриваемой математической модели. Полученные карты позволяют объяснить медленную динамику системы близостью к косимметричному случаю и дать трактовку эффекта выживания популяции за счет изменения диффузионной мобильности при исчерпании ресурса.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  5. Хавинсон М.Ю., Кулаков М.П., Фрисман Е.Я.
    Математическое моделирование динамики численности возрастных групп занятых на примере южных регионов Дальнего Востока России
    Компьютерные исследования и моделирование, 2016, т. 8, № 5, с. 787-801

    Предлагается нелинейная математическая модель динамики численности занятого населения разных возрастных групп с учетом их взаимодействий, которые рассматриваются по аналогии с популяционными взаимодействиями (конкуренция, дискриминация, помощь, угнетение и т. п.). Под взаимодействиями понимаются такие обобщенные социально-экономические механизмы, которые вызывают взаимосвязанные изменения численности занятых различных возрастных групп. Рассматриваются три возрастные группы занятого населения: молодые специалисты (15–29 лет), с опытом работы (30–49 лет), работники предпенсионного и пенсионного возраста (50 и старше). На основе статистических данных выполнена оценка параметров предложенной модели для южных регионов Дальневосточного федерального округа (ДФО). Анализ модели и модельных сценариев позволяет заключить, что наблюдаемые колебания численности разновозрастных работников на фоне стабильной общей численности занятого населения могут быть следствием сложных взаимодействий этих групп между собой. Вычислительные эксперименты, проведенные при полученных значениях параметров, позволили рассчитать темпы снижения численности и старения занятого населения, а также определить характер взаимодействий между возрастными группами занятых, прямо не отраженный в статистических данных. Установлено, что в целом по ДФО занятые 50 лет и старше находятся с работающей молодежью до 29 лет в отношениях дискриминации, занятые до 29 лет и 30–49 лет — в отношениях партнерства. Наиболее развитые регионы (Приморский край и Хабаровский край) демонстрируют «равномерную» конкуренцию среди разных возрастных групп занятого населения. Для Приморского края удалось выявить эффект перемешивания сценариев динамики, что характерно для систем, находящихся в состоянии структурной перестройки. Этот эффект выражается в том, что при значительном уменьшении миграционного притока занятых 30–49 лет будут формироваться длинные циклы занятости. Кроме того, изменение миграции сопровождается сменой типа взаимодействия — с дискриминации старшего поколения средним на дискриминацию среднего возраста старшим. Для менее развитых регионов Дальнего Востока (Амурская, Магаданская и Еврейская автономная области) характерны более низкие значения миграционного сальдо почти всех возрастов, а также дискриминация со стороны занятой молодежи до 29 лет других возрастных групп и дискриминация занятыми 30–49 лет старшего поколения.

    Просмотров за год: 4. Цитирований: 3 (РИНЦ).
  6. Зубкова Е.В., Жукова Л.А., Фролов П.В., Шанин В.Н.
    Работы А. С. Комарова по клеточно-автоматному моделированию популяционно-онтогенетических процессов у растений
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 285-295

    Рассмотрены возможности моделирования в технике клеточных автоматов применительно к травянистым растениям и кустарничкам. Приводятся основные положения дискретного описания онтогенезов растений, на которых основывается математическое моделирование. В обзоре обсуждаются основные результаты, полученные с использованием моделей и раскрывающие закономерности функционирования ценопопуляций и сообществ. Описана модель CAMPUS и результаты компьютерного эксперимента по разрастанию двух клонов брусники с разной геометрией побегов. Публикация посвящена работам профессора А. С. Комарова, основоположника направления; дан список его основных публикаций по этой тематике.

    Просмотров за год: 2. Цитирований: 6 (РИНЦ).
  7. Гасников А.В., Кубентаева М.Б.
    Поиск стохастических равновесий в транспортных сетях с помощью универсального прямо-двойственного градиентного метода
    Компьютерные исследования и моделирование, 2018, т. 10, № 3, с. 335-345

    В статье рассматривается одна из задач транспортного моделирования — поиск равновесного распределения транспортных потоков в сети. Для описания временных издержек и распределения потоков в сети, представляемой с помощью графа, используется классическая модель Бэкмана. При этом поведение агентов не является полностью рациональным, что описывается посредством введения марковской логит-динамики: в каждый момент времени водительвыбирает маршрут случайно согласно распределению Гиббса с учетом текущих временных затрат на ребрах графа. Таким образом, задача сводится к поиску стационарного распределения для данной динамики, которое является стохастическим равновесием Нэша – Вардропа в соответствующей популяционной игре загрузки транспортной сети. Так как данная игра является потенциальной, эта задача эквивалентна минимизации некоторого функционала от распределения потоков, причем стохастичностьпро является в появлении энтропийной регуляризации. Для полученной задачи оптимизации построена двойственная задача. Для ее решения применен универсальный прямо-двойственный градиентный метод. Его особенность заключается в адаптивной настройке на локальную гладкость задачи, что особенно важно при сложной структуре целевой функции и невозможности априорно оценитьг ладкость с приемлемой точностью. Такая ситуация имеет место в рассматриваемой задаче, так как свойства функции сильно зависят от транспортного графа, на который мы не накладываем сильных ограничений. В статье приводится описание алгоритма, в том числе подробно рассмотрено применение численного дифференцирования для вычисления значения и градиента целевой функции. В работе представлены теоретическая оценка времени работы алгоритма и результаты численных экспериментов на примере небольшого американского города.

    Просмотров за год: 28.
  8. Казарян М., Якушкина Т.С., Саакян Д.Б.
    Эволюционная динамика для многомерного ландшафта приспособленности
    Компьютерные исследования и моделирование, 2015, т. 7, № 6, с. 1269-1277

    В данной работе рассматривается одна из самых значимых моделей популяционной генетики — модель Кроу–Кимуры. В последнее десятилетие были исследованы модели с ландшафтами приспособленности малой размерности. Цель статьи состоит в анализе модели Кроу–Кимуры c многомерным ландшафтом приспособленности в рамках формализма Гамильтона–Якоби. Для случая однопикового ландшафта приспособленности выводятся точные аналитические выражения, которые подтверждаются численно.

    Просмотров за год: 4.
  9. Фрисман Е.Я., Кулаков М.П., Ревуцкая О.Л., Жданова О.Л., Неверова Г.П.
    Основные направления и обзор современного состояния исследований динамики структурированных и взаимодействующих популяций
    Компьютерные исследования и моделирование, 2019, т. 11, № 1, с. 119-151

    Даже беглый взгляд на впечатляющее множество современных работ по математическому моделированию популяционной динамики позволяет заключить, что основной интерес авторов сосредоточен вокруг двух-трех ключевых направлений исследований, связанных с описанием и анализом динамики, либо отдельных структурированных популяций, либо систем однородных популяций, взаимодействующих между собой в экологическом сообществе или (и) в физическом пространстве. В рамках данной работы приводится обзор и систематизируются научные исследования и результаты, полученные на сегодняшний день в ходе развития идей и подходов математического моделирования динамики структурированных и взаимодействующих популяций. В вопросах моделирования динамики численности изолированных популяций описана эволюция научных идей по пути усложнения моделей — от классической модели Мальтуса до современных моделей, учитывающих множество факторов, влияющих на популяционную динамику. В частности, рассматриваются динамические эффекты, к которым приводит учет экологической емкости среды, плотностно-зависимая регуляция, эффект Олли, усложнение возрастной и стадийной структуры. Особое внимание уделяется вопросам мультистабильности популяционной динамики. Кроме того, представлены исследования, в которых анализируется влияние промыслового изъятия на динамику структурированных популяций и возникновение эффекта гидры. Отдельно рассмотрены вопросы возникновения и развития пространственных диссипативных структур в пространственно разобщенных популяциях и сообществах, связанных миграциями. Здесь особое внимание уделяется вопросам частотной и фазовой мультистабильности популяционной динамики, а также возникновению пространственных кластеров. В ходе систематизации и обзора задач, посвященных моделированию динамики взаимодействующих популяций, основное внимание уделяется сообществу «хищник–жертва». Представлены ключевые идеологические подходы, применяемые в современной математической биологии при моделировании систем типа «хищник–жертва», в том числе с учетом структуры сообщества и промыслового изъятия. Кратко освещены вопросы возникновения и сохранения мозаичной структуры в пространственно распределенных и миграционно связанных сообществах.

    Просмотров за год: 40. Цитирований: 2 (РИНЦ).
  10. Кондратьев М.А.
    Методы прогнозирования и модели распространения заболеваний
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882

    Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.

    Просмотров за год: 71. Цитирований: 19 (РИНЦ).
Страницы: предыдущая следующая последняя »

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.