Текущий выпуск Номер 6, 2020 Том 12
Результаты поиска по 'агентный подход':
Найдено статей: 8
  1. От редакции
    Компьютерные исследования и моделирование, 2018, т. 10, № 6, с. 733-735
    Просмотров за год: 20.
  2. От редакции
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 773-776
  3. От редакции
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 471-473
  4. Топаж А.Г., Абрамова А.В., Толстопятов С.Е.
    Дискретные модели популяционной динамики: достоинства, проблемы и обоснование
    Компьютерные исследования и моделирование, 2016, т. 8, № 2, с. 267-284

    Работа посвящена анализу достоинств, недостатков и обоснований применимости дискретных моделей в динамике популяций. Под дискретизацией в общем смысле понимается замена непрерывных величин их дискретными аналогами, то есть сведение задачи от непрерывных к перечислимым множествам. Рассмотрены прецеденты использования временной, пространственной и структурной дискретизации в типичных задачах математической экологии и совершена попытка оценить степень адекватности и границы применимости соответствующих моделей.

    Просмотров за год: 6. Цитирований: 6 (РИНЦ).
  5. Кондратьев М.А.
    Методы прогнозирования и модели распространения заболеваний
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 863-882

    Число работ, посвященных прогнозированию инфекционной заболеваемости, стремительно растет по мере появления статистики, позволяющей провести анализ. В настоящей статье представлен обзор основных решений, доступных сегодня для формирования как краткосрочных, так и долгосрочных проекций заболеваемости; указаны их ограничения и возможности практического применения. Рассмотрены традиционные методы анализа временных рядов — регрессионные и авторегрессионные модели; подходы, опирающиеся на машинное обучение — байесовские сети и искусственные нейронные сети; рассуждения на основе прецедентов; техники, базирующиеся на решении задачи фильтрации. Перечислены важнейшие направления разработки математических моделей распространения заболевания: классические аналитические модели, детерминированные и стохастические, а также современные имитационные модели, сетевые и агентные.

    Просмотров за год: 71. Цитирований: 19 (РИНЦ).
  6. Прядеин Р.Б., Степанцов М.Е.
    Об одном подходе к имитационному моделированию спортивной игры с непрерывным временем
    Компьютерные исследования и моделирование, 2014, т. 6, № 3, с. 455-460

    Работа посвящена обсуждению методов статистического моделирования исходов спортивных соревнований вообще и спортивной игры с непрерывным временем в частности. Предложен основанный на имитационном моделировании хода такой игры подход к предсказанию результата игры, представляющий собой некоторый промежуточный вариант между чистым статистическим моделированием и агентным моделированием действий отдельных игроков, участвующих в матче. Приведен пример ретроспективного прогноза на основе предложенной модели.

    Просмотров за год: 3. Цитирований: 2 (РИНЦ).
  7. Серков Л.А., Красных С.С.
    Объединение агентного подхода и подхода общего равновесия для анализа влияния теневого сектора на российскую экономику
    Компьютерные исследования и моделирование, 2020, т. 12, № 3, с. 669-684

    В предлагаемой публикации используется объединение оптимизационного подхода общего равновесия, позволяющего объяснить поведение спроса, предложения и цен в экономике с несколькими взаимодействующими рынками, и мультиагентного имитационного подхода, формализующего поведение домашних хозяйств. Интегрирование двух этих подходов рассматривается на примере динамической стохастической модели, включающей теневой, неформальный и сектор домашних хозяйств, производящих блага для собственного потребления. Синтеза гентного подхода и подхода общего равновесия осуществляется с помощью компьютерной реализации рекурсивной обратной связи между микроагентами и макросредой. В предлагаемом исследовании для реализации взаимодействия микроагентов с макросредой используется один из самых популярных подходов, аппроксимирующий распределение доходов индивидуальных агентов дискретным и конечным набором моментов. Особенностью алгоритма реализации рекурсивной обратной связи является получение индивидуальных поведенческих функций микроагентов при их взаимодействии с макросредой, имитационное моделирование с помощью метода Монте-Карло индивидуальных доходов всей совокупности агентов с последующей агрегацией доходов. Параметры модели оцениваются с помощью байесовской эконометрики на статистических данных экономики России. Исходя изс равнения функций правдоподобия, сделан вывод, что исследуемая модель с неоднородными агентами более адекватно описывает эмпирические данные российской экономики. Поведение функций импульсного отклика основных переменных модели свидетельствует об антициклическом характере политики, связанной с наличием теневых секторов экономики (включая неформальный сектор и сектор производства домохозяйств) во время рецессий. Важным фактором является также то, что индивидуальность в поведении агентов способствует повышению эластичности предложения труда в исследуемых секторах экономики. Научной новизной исследования является объединение мультиагентного подхода и подхода общего равновесия для моделирования макроэкономических процессов на региональном и национальном уровне. Перспективы дальнейших исследований могут быть связаны с моделированием и компьютерной реализацией большего числа источников гетерогенности, позволяющих, в частности, описать поведение неоднородных групп агентов в секторах, связанных с производством товаров и услуг.

  8. Вигонт В.А., Миронычева Е.С., Топаж А.Г.
    Модификация модели роста грибов Чантера–Торнли и ее анализ средствами многоподходного имитационного моделирования
    Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 375-385

    Классическая математическая модель выращивания грибов Чантера–Торнли модифицирована и реализована в среде имитационного моделирования AnyLogic с одновременным использованием элементов системной динамики, дискретно-событийного и агентного подхода. Проведено численное исследование построенной модели и решена оптимизационная задача нахождения возраста срезания плодовых тел, обеспечивающего максимальный интегральный урожай грибов по всем «волнам» плодообразования.

    Просмотров за год: 3. Цитирований: 3 (РИНЦ).

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал входит в Перечень российских рецензируемых научных журналов, в которых должны быть опубликованы основные научные результаты диссертаций на соискание ученых степеней доктора и кандидата наук ВАК, группы специальностей: 01.01.00, 01.02.00.
 

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Журнал индексируется в Scopus