Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
- Просмотров за год: 10.
-
Стационарные состояния и бифуркации в одномерной активной среде осцилляторов
Компьютерные исследования и моделирование, 2023, т. 15, № 3, с. 491-512В предлагаемой статье приводятся результаты аналитического и компьютерного исследования коллективных динамических свойств цепочки автоколебательных систем (условно — осцилляторов). Предполагается, что связи отдельных элементов цепочки являются невзаимными, однонаправленными. Точнее, предполагается, что каждый элемент цепочки находится под воздействием предыдущего, в то время как обратная реакция отсутствует (физически несущественна). В этом состоит главная особенность цепочки. Данную систему можно интерпретировать как активную дискретную среду с однонаправленным переносом, в частности переносом вещества. Подобные цепочки могут являться математическими моделями реальных систем с решеточной структурой, имеющих место в самых различных областях естествознания и техники: в физике, химии, биологии, радиотехнике, экономике и др. Также они могут быть моделями технологических и вычислительных процессов. В качестве элементов решетки выбраны нелинейные автоколебательные системы (условно — осцилляторы) с широким спектром потенциально возможных индивидуальных автоколебаний: от периодических до хаотических. Это позволяет исследовать различные динамические режимы цепочки от регулярных до хаотических, меняя параметры элементов и не меняя природу самих элементов. Совместное применение качественных методов теории динамических систем и качественно-численных методов позволяет получить обозримую картину всевозможных динамических режимов цепочки. Исследуются условия существования и устойчивости пространственно однородных динамических режимов (детерминированных и хаотических) цепочки. Аналитические результаты иллюстрированы численным экспериментом. Исследуются динамические режимы цепочки при возмущениях параметров на ее границе. Показывается возможность управления динамическими режимами цепочки путем включения необходимого возмущения на границе. Рассматриваются различные случаи динамики цепочек, составленных из неоднородных (различных по своим параметрам) элементов. Аналитически и численно исследуется глобальная (всех осцилляторов цепочки) хаотическая синхронизация.
Ключевые слова: динамическая система, решетка, бифуркации, осциллятор, фазовое пространство, динамический хаос, синхронизация. -
Моделирование двухфазного течения в пористых средах с использованием неоднородной сетевой модели
Компьютерные исследования и моделирование, 2024, т. 16, № 4, с. 913-925Представлена неоднородная двумерная сетевая модель двухфазного течения в пористых средах. Предполагается, что ребра сети представляют собой капиллярные трубки разного радиуса. Предложен новый алгоритм управления фазовыми потоками в узлах этой сетевой модели. Показано, что сетевая модель демонстрирует свойства, аналогичные свойствам реальных пористых сред: капиллярная пропитка, зависимость капиллярного давления от насыщенности и влияние капиллярных сил при двухфазном течении. Было решено две тестовые задачи: противоточная пропитка пористого блока и двухфазное течение в периодически неоднородной пористой среде. В первой задаче реализована сеть, состоящая из двух областей: область с низкой проницаемостью и тонкими капиллярами окружена областью с высокой проницаемостью и толстыми капиллярами, изначально насыщенными смачивающими и несмачивающими несжимаемыми жидкостями соответственно. Капиллярное равновесие устанавливается за счет противоточной пропитки внутренней области. Исследована зависимость насыщенности смачивающей жидкости в областях от времени и капиллярного давления от текущей насыщенности. Получено качественное соответствие известным экспериментальным и теоретическим результатам, что в дальнейшем позволит использовать эту сетевую модель для проверки осредненных моделей капиллярной неравновесности. Во второй задаче рассматривается двухфазное вытеснение, при котором сеть изначально насыщается несмачивающей жидкостью. Затем смачивающая жидкость вводится через границу с постоянным расходом. Анализируется распределение насыщенности вдоль оси, направленной вдоль приложенного градиента давления, для различных моментов времени при различных значениях коэффициентов поверхностного натяжения. Результаты расчетов показывают, что при более низких значениях коэффициента поверхностного натяжения смачивающая жидкость предпочитает проникать через более толстые трубки, а при более высоких значениях — через более тонкие.
Ключевые слова: пористая среда, капиллярное давление, пропитка, многофазный поток, сетевые модели, периодически неоднородные среды. -
Определение с помощью вычислительной среды DEFORM-3D влияния вибраций рабочего валка на формирование толщины полосы при холодной прокатке
Компьютерные исследования и моделирование, 2017, т. 9, № 1, с. 111-116Современные тенденции развития технического диагностирования связаны с применением вычислительных сред для компьютерного моделирования, позволяющих во многом заменить реальные эксперименты, снизить затраты на исследование и минимизировать риски. Компьютерное моделирование позволяет еще на этапе проектирования оборудования провести диагностирование с целью определения допустимых отклонений параметров работы технической установки. Особенностью диагностирования прокатного оборудования является то, что работа технологического агрегата непосредственно связана с формированием заданного качества получаемой металлопродукции, в том числе по точности. При этом важная роль отводится разработке методик технической диагностики и диагностического моделирования процессов прокатки и оборудования. Проведено компьютерное диагностическое моделирование процесса продольной холодной прокатки полосы с вибрацией рабочего валка в горизонтальной плоскости по известным данным экспериментальных исследований на непрерывном стане 1700. Вибрация рабочего валка в прокатной клети возникала вследствие зазора между подушкой валка и направляющей в станине и приводила к формированию периодической составляющей в отклонениях толщины полосы. По результатам моделирования с помощью вычислительной среды DEFORM-3D получили прокатанную полосу, которая имела продольную и поперечную разнотолщинность. Визуализация данных геометрических параметров полосы, полученных при моделировании, соответствовала виду неоднородностей поверхности реально прокатанной полосы. Дальнейший анализ разнотолщинности проводили с целью определения возможности идентификации по результатам моделирования источников периодических составляющих толщины полосы, причиной которых являются отклонения в работе оборудования, обусловленные его неисправностями или неправильной настройкой. Преимущество компьютерного моделирования при поиске источников образования разнотолщинности состоит в том, что можно проверить различные предположения по формированию толщины проката, не проводя реальных экспериментов и сократив таким образом временны́ е и материальные затраты, связанные с подготовкой и проведением экспериментов. Кроме того, при компьютерном моделировании толщина задаваемой полосы не будет иметь отклонений, что позволит рассматривать влияние на формирование толщины изучаемого источника без помех, связанных с наследственной разнотолщинностью, как это наблюдается в промышленных или лабораторных экспериментах. На основе спектрального анализа случайных процессов установлено, что в реализации толщины прокатанной полосы, полученной компьютерным моделированием процесса прокатки в одной клети при вибрации рабочего валка, содержится периодическая составляющая, имеющая частоту, равную заданной частоте колебаний рабочего валка. Результаты компьютерного моделирования согласуются с данными исследований на стане 1700. Таким образом, показана возможность применения компьютерного моделирования при поиске причин формирования разнотолщинности на промышленном прокатном оборудовании.
Ключевые слова: вибрация, холодная прокатка, рабочий валок, конечно-элементный анализ, DEFORM-3D, разнотолщинность.Просмотров за год: 12. Цитирований: 1 (РИНЦ).
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"