Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'оптимальное управление движением':
Найдено статей: 25
  1. Малыгина Н.В., Сурков П.Г.
    О моделировании преодоления водной преграды Rangifer tarandus L
    Компьютерные исследования и моделирование, 2019, т. 11, № 5, с. 895-910

    Видоспецифическими поведенческими признаками дикого северного оленя Rangifer tarandus L. традиционно признаны сезонные миграции и стадный инстинкт. В период миграций эти животные вынуждены преодолевать водные преграды. Особенности поведения рассматриваются как результат процесса селекции, когда среди множества стратегий выбрана единственно эволюционно-стабильная, определяющая репродукцию и биологическую выживаемость дикого северного оленя как вида. Ввиду эскалации промышленного освоения Арктики в настоящее время естественные процессы в популяциях диких северных оленей таймырской популяции происходят на фоне увеличения влияния негативных факторов, поэтому естественно возникла необходимость выявления этологических особенностей этих животных. В настоящей работе представлены результаты применения классических методов теории оптимального управления и дифференциальных игр к исследованию миграционных этограмм диких северных оленей при преодолении водных преград, в том числе крупных рек. На основе этологических особенностей этих животных и форм поведения стадо представляется в качестве управляемой динамической системы. Также оно делится на два класса особей: вожак и остальное стадо, для которых строятся свои модели, описывающие траектории их движения. В основу моделей закладываются гипотезы, представляющие собой математическую формализацию некоторых схем поведения животных. Данный подход позволил найти траекторию важенки с использованием методов теории оптимального управления, а при построении траекторий остальных особей — применить принцип управления с поводырем. Апробация полученных результатов, которые могут быть использованы в формировании общей «платформы» для систематического построения моделей адаптивного поведения и в качестве задела для фундаментальных разработок моделей когнитивной эволюции, проводится численно на модельном примере, использующем данные наблюдений на реке Верхняя Таймыра.

  2. Охапкин В.П.
    Оптимальное управление вложением средств коммерческого банка с учетом процессов реинвестирования
    Компьютерные исследования и моделирование, 2014, т. 6, № 2, с. 309-319

    Статья посвящена созданию математического управления процессами вложения средств банка в его деятельность. Весь процесс построения оптимального управления можно разбить на две составляющие: первая, выявление функций, описывающих движение ликвидного капитала в банке, и вторая, использование полученных функций в схеме динамического программирования. Прежде эта задача была рассмотрена в статье «Оптимальное управление вложением средств банка как фактор экономической стабильности» в № 4 за 2012 год. В существующей статье рассмотрена модификация этого решения, в частности, вводится дополнительная функция реинвестирования ℜ(φ), где φ — это приток ликвидных средств от предшествующего шага.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
  3. Софронова Е.А., Дивеев А.И., Казарян Д.Э., Константинов С.В., Дарьина А.Н., Селиверстов Я.А., Баскин Л.А.
    Использование реальных данных из нескольких источников для оптимизации транспортных потоков в пакете CTraf
    Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 147-159

    Рассмотрена задача оптимального управления транспортным потоком в сети городских дорог. Управление осуществляется изменением длительностей рабочих фаз светофоров на регулируемых перекрестках. Приведено описание разработанной системы управления. В системе управления предусмотрено использование трех видов управлений: программного, с обратной связью и ручного. При управлении с обратной связью для определения количественных характеристик транспортного потока используются детекторы дорожной инфраструктуры, видеокамеры, индуктивные петлевые и радиолокационные датчики. Обработка сигналов с детекторов позволяет определить состояние транспортного потока в каждый текущий момент времени. Для определения моментов переключения рабочих фаз светофоров количественные характеристики транспортных потоков поступают в математическую модель транспортного потока, реализованную в вычислительной среде системы автоматического управления транспортными потоками. Модель представляет собой систему конечно-разностных рекуррентных уравнений и описывает изменение транспортного потока на каждом участке дороги в каждый такт времени на основе рассчитанных данных по характеристикам транспортного потока в сети, пропускным способностям маневров и распределению потока на перекрестках с альтернативными направлениями движения. Модель обладает свойствами масштабирования и агрегирования. Структура модели зависит от структуры графа управляемой сети дорог, а количество узлов в графе равно количеству рассматриваемых участков дорог сети. Моделирование изменений транспортного потока в режиме реального времени позволяет оптимально определять длительности рабочих фаз светофоров и обеспечивать управление транспортным потоком с обратной связью по его текущему состоянию. В работе рассмотрена система автоматического сбора и обработки данных, поступающих в модель. Для моделирования состояний транспортного потока в сети и решения задачи оптимального управления транспортным потоком разработан программный комплекс CTraf, краткое описание которого представлено в работе. Приведен пример решения задачи оптимального управления транспортным потокам в сети дорог города Москва на основе реальных данных.

  4. Ветчанин Е.В., Тененев В.А., Шаура А.С.
    Управление движением жесткого тела в вязкой жидкости
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 659-675

    Решена задача оптимального управления движением мобильного объекта с внешней жесткой оболочкой вдользаданной траектории в вязкой жидкости. Рассматриваемый мобильный робот обладает свойством самопродвижения. Самопродвижение осуществляется за счет возвратнопоступательных колебаний внутренней материальной точки. Оптимальное управление движением построено на основе системы нечеткого логического вывода Сугено. Для получения базы нечетких правил предложен подход, основанный на построении деревьев решений с помощью разработанного генетического алгоритма структурно-параметрического синтеза.

    Просмотров за год: 2. Цитирований: 1 (РИНЦ).
  5. В работе решается задача установления зависимости потенциала пространственной селекции полезных и мешающих сигналов по критерию отношения «сигнал/помеха» от погрешности позиционирования устройств при диаграммообразовании по местоположению на базовой станции, оборудованной антенной решеткой. Конфигурируемые параметры моделирования включают планарную антенную решетку с различным числом антенных элементов, траекторию движения, а также точность определения местоположения по метрике среднеквадратического отклонения оценки координат устройств. В модели реализованы три алгоритма управления формой диаграммы направленности: 1) управление положением одного максимума и одного нуля; 2) управление формой и шириной главного лепестка; 3) адаптивная схема. Результаты моделирования показали, что первый алгоритм наиболее эффективен при числе элементов антенной решетки не более 5 и погрешности позиционирования не более 7 м, а второй алгоритм целесообразно использовать при числе элементов антенной решетки более 15 и погрешности позиционирования более 5 м. Адаптивное диаграммообразование реализуется по обучающему сигналу и обеспечивает оптимальную пространственную селекцию полезных и мешающих сигналов без использования данных о местоположении, однако отличается высокой сложностью аппаратной реализации. Скрипты разработанных моделей доступны для верификации. Полученные результаты могут использоваться при разработке научно обоснованных рекомендаций по управлению лучом в сверхплотных сетях радиодоступа миллиметрового диапазона пятого и последующих поколений.

Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.