Все выпуски
- 2024 Том 16
- 2023 Том 15
- 2022 Том 14
- 2021 Том 13
- 2020 Том 12
- 2019 Том 11
- 2018 Том 10
- 2017 Том 9
- 2016 Том 8
- 2015 Том 7
- 2014 Том 6
- 2013 Том 5
- 2012 Том 4
- 2011 Том 3
- 2010 Том 2
- 2009 Том 1
-
Простейшая поведенческая модель формирования импринта
Компьютерные исследования и моделирование, 2014, т. 6, № 5, с. 793-802Просмотров за год: 5. Цитирований: 2 (РИНЦ).Формирование адекватных поведенческих паттернов в условиях неизвестного окружения осуществляется через поисковое поведение. При этом быстрейшее формирование приемлемого паттерна представляется более предпочтительным, чем долгая выработка совершенного паттерна, через многократное воспроизведение обучающей ситуации. В экстремальных ситуациях наблюдается явление импринтирования — мгновенного запечатления поведенческого паттерна, обеспечившего выживание особи. В данной работе предложены гипотеза и модель импринта, когда обученная по единственному успешному поведенческому паттерну нейронная сеть анимата демонстрирует эффективное функционирование. Реалистичность модели оценена путем проверки устойчивости воспроизведения поведенческого паттерна к возмущениям ситуации запуска импринта.
-
Исследование двухнейронных ячеек памяти в импульсных нейронных сетях
Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 401-416В данной работе изучаются механизмы рабочей памяти в импульсных нейронных сетях, состоящих из нейронов – интеграторов с утечкой и адаптивным порогом при включенной синаптической пластичности. Исследовались относительно небольшие сети, включающие тысячи нейронов. Рабочая память трактовалась как способность нейронной сети удерживать в своем состоянии информацию о предъявленных ей в недавнем прошлом стимулах, так что по этой информации можно было бы определить, какой стимул был предъявлен. Под состоянием сети в данном исследовании понимаются только характеристики активности сети, не включая внутреннего состояния ее нейронов. Для выявления нейронных структур, которые могли бы выполнять функцию носителей рабочей памяти, была проведена оптимизация параметров и структуры импульсной нейронной сети с помощью генетического алгоритма. Были обнаружены два типа таких нейронных структур: пары нейронов, соединенных связями с большими весами, и длинные древовидные нейронные цепи. Было показано, что качественная рабочая память может быть реализована только с помощью сильно связанных нейронных пар. В работе исследованы свойства таких ячеек памяти и образуемых ими структур. Показано, что характеристики изучаемых двухнейронных ячеек памяти легко задаются параметрами входящих в них нейронов и межнейронных связей. Выявлен интересный эффект повышения селективности пары нейронов за счет несовпадения наборов их афферентных связей и взаимной активации. Продемонстрировано также, что ансамбли таких структур могут быть использованы для реализации обучения без учителя распознаванию паттернов во входном сигнале.
-
Нейросетевая модель распознавания знаков дорожного движения в интеллектуальных транспортных системах
Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 429-435В данной статье проводится анализ проблемы распознавания знаков дорожного движения в интеллектуальных транспортных системах. Рассмотрены основные понятия компьютерного зрения и задачи распознавания образов. Самым эффективным и популярным подходом к решению задач анализа и распознавания изображений на данный момент является нейросетевой, а среди возможных нейронных сетей лучше всего показала себя искусственная нейронная сеть сверточной архитектуры. Для решения задачи классификации при распознавании дорожных знаков использованы такие функции активации, как Relu и SoftMax. В работе предложена технология распознавания дорожных знаков. Выбор подхода для решения поставленной задачи на основе сверточной нейронной сети обусловлен возможностью эффективно решать задачу выделения существенных признаков и классификации изображений. Проведена подготовка исходных данных для нейросетевой модели, сформирована обучающая выборка. В качестве платформы для разработки интеллектуальной нейросетевой модели распознавания использован облачный сервис Google Colaboratory с подключенными библиотеками для глубокого обучения TensorFlow и Keras. Разработана и протестирована интеллектуальная модель распознавания знаков дорожного движения. Использованная сверточная нейронная сеть включала четыре каскада свертки и подвыборки. После сверточной части идет полносвязная часть сети, которая отвечает за классификацию. Для этого используются два полносвязных слоя. Первый слой включает 512 нейронов с функцией активации Relu. Затем идет слой Dropout, который используется для уменьшения эффекта переобучения сети. Выходной полносвязный слой включает четыре нейрона, что соответствует решаемой задаче распознавания четырех видов знаков дорожного движения. Оценка эффективности нейросетевой модели распознавания дорожных знаков методом трехблочной кроссалидации показала, что ее ошибка минимальна, следовательно, в большинстве случаев новые образы будут распознаваться корректно. Кроме того, у модели отсутствуют ошибки первого рода, а ошибка второго рода имеет низкое значение и лишь при сильно зашумленном изображении на входе.
-
Сравнение оценок онлайн- и офлайн-подходов для седловой задачи в билинейной форме
Компьютерные исследования и моделирование, 2023, т. 15, № 2, с. 381-391Стохастическая оптимизация является актуальным направлением исследования в связи со значительными успехами в области машинного обучения и их применениями для решения повседневных задач. В данной работе рассматриваются два принципиально различных метода решения задачи стохастической оптимизации — онлайн- и офлайн-алгоритмы. Соответствующие алгоритмы имеют свои качественные преимущества перед друг другом. Так, для офлайн-алгоритмов требуется решать вспомогательную задачу с высокой точностью. Однако это можно делать распределенно, и это открывает принципиальные возможности, как, например, построение двойственной задачи. Несмотря на это, и онлайн-, и офлайн-алгоритмы преследуют общую цель — решение задачи стохастической оптимизации с заданной точностью. Это находит отражение в сравнении вычислительной сложности описанных алгоритмов, что демонстрируется в данной работе.
Сравнение описанных методов проводится для двух типов стохастических задач — выпуклой оптимизации и седел. Для задач стохастической выпуклой оптимизации существующие решения позволяют довольно подробно сравнить онлайн- и офлайн-алгоритмы. В частности, для сильно выпуклых задач вычислительная сложность алгоритмов одинаковая, причем условие сильной выпуклости может быть ослаблено до условия $\gamma$-роста целевой функции. С этой точки зрения седловые задачи являются гораздо менее изученными. Тем не менее существующие решения позволяют наметить основные направления исследования. Так, значительные продвижения сделаны для билинейных седловых задач с помощью онлайн-алгоритмов. Оффлайн-алгоритмы представлены всего одним исследованием. В данной работе на этом примере демонстрируется аналогичная с выпуклой оптимизацией схожесть обоих алгоритмов. Также был проработан вопрос точности решения вспомогательной задачи для седел. С другой стороны, седловая задача стохастической оптимизации обобщает выпуклую, то есть является ее логичным продолжением. Это проявляется в том, что существующие результаты из выпуклой оптимизации можно перенести на седла. В данной работе такой перенос осуществляется для результатов онлайн-алгоритма в выпуклом случае, когда целевая функция удовлетворяет условию $\gamma$-роста.
-
Повышение качества генерации маршрутов в SUMO на основе данных с детекторов с использованием обучения с подкреплением
Компьютерные исследования и моделирование, 2024, т. 16, № 1, с. 137-146Данная работа предлагает новый подход к построению высокоточных маршрутов на основе данных от транспортных детекторов в пакете моделирования трафика SUMO. Существующие инструменты, такие как flowrouter и routeSampler, имеют ряд недостатков, таких как отсутствие взаимодействия с сетью в процессе построения маршрутов. Наш rlRouter использует мультиагентное обучение с подкреплением (MARL), где агенты — это входящие полосы движения, а окружающая среда — дорожная сеть. Добавляя в сеть транспортные средства с определенными маршрутами, агенты получают вознаграждение за сопоставление данных с детекторами транспорта. В качестве алгоритма мультиагентного обучения с подкреплением использовался DQN с разделением параметров между агентами и LSTM-слоем для обработки последовательных данных.
Поскольку rlRouter обучается внутри симуляции SUMO, он может лучше восстанавливать маршруты, принимая во внимание взаимодействие транспортных средств внутри сети друг с другом и с сетевой инфраструктурой. Мы смоделировали различные дорожные ситуации на трех разных перекрестках, чтобы сравнить производительность маршрутизаторов SUMO с rlRouter. Мы использовали среднюю абсолютную ошибку (MAE) в качестве меры отклонения кумулятивных данных детекторов и от данных маршрутов. rlRouter позволил добиться высокого соответствия данным с детекторов. Мы также обнаружили, что, максимизируя вознаграждение за соответствие детекторам, результирующие маршруты также становятся ближе к реальным. Несмотря на то, что маршруты, восстановленные с помощью rlRouter, превосходят маршруты, полученные с помощью инструментов SUMO, они не полностью соответствуют реальным из-за естественных ограничений петлевых детекторов. Чтобы обеспечить более правдоподобные маршруты, необходимо оборудовать перекрестки другими видами транспортных счетчиков, например, детекторами-камерами.
-
Распознавание эффектов и механизма действия препаратов на основе анализа внутричерепной ЭЭГ с помощью методов глубокого обучения
Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 755-772Прогнозирование новых свойств лекарственных средств является основной задачей в рамках решения проблем полифармакологии, репозиционирования, а также изучения биологически активных веществ на доклиническом этапе. Идентификация фармакологических эффектов и взаимодействий «препарат – мишень» с использованием машинного обучения (включая методы глубокого обучения) набирает популярность в последние годы.
Цель работы состояла в разработке метода распознавания психотропных эффектов и механизма действия (взаимодействий препарата с мишенью) на основании анализа биоэлектрической активности мозга с применением технологий искусственного интеллекта.
Выполнялась регистрация электроэнцефалографических (ЭЭГ) сигналов крыс (4 канала, частота дискретизации — 500 Гц) после введения психотропных препаратов (габапентин, диазепам, карбамазепин, прегабалин, эсликарбазепин, феназепам, ареколин, коразол, пикротоксин, пилокарпин, хлоралгидрат). Сигналы (эпохи продолжительностью 2 с) преобразовывались в изображения $(2000 \times 4)$ и затем поступали на вход автоэнкодера. Выходные данные слоя «бутылочного горлышка» классифицировались и кластеризовались (с применением алгоритма t-SNE), а затем вычислялись расстояния между кластерами в пространстве параметров. В качестве альтернативны использовался подход, основанный на извлечении признаков с размерной редукцией при помощи метода главных компонент и классификацией методом опорных векторов с ядерной функцией (kSVM). Модели валидировались путем 5-кратной кроссвалидации.
Точность классификации для 11 препаратов, полученная в ходе кросс-валидации, достигала $0,580 \pm 0,021$, что значительно превышает точность случайного классификатора, которая составляла $0,091 \pm 0,045$ $(p < 0,0001)$, и точность kSVM, равную $0,441 \pm 0,035$ $(p < 0,05)$. Получены t-SNE-карты параметров «бутылочного горлышка» сигналов интракраниальной ЭЭГ. Определена относительная близость кластеров сигналов в параметрическом пространстве.
В настоящем исследовании представлен оригинальный метод биопотенциал-опосредованного прогнозирования эффектов и механизма действия (взаимодействия лекарственного средства с мишенью). Метод использует сверточные нейронные сети в сочетании с модифицированным алгоритмом избирательной редукции параметров. ЭЭГ-сигналы, зарегистрированные после введения препаратов, были представлены в едином пространстве параметров в сжатой форме. Полученные данные указывают на возможность распознавания паттернов нейронального отклика в ответ на введение различных психотропных препаратов с помощью предложенного нейросетевого классификатора и кластеризации.
-
Моделирование реологических характеристик водных суспензий на основе наноразмерных частиц диоксида кремния
Компьютерные исследования и моделирование, 2024, т. 16, № 5, с. 1217-1252Реологическое поведение водных суспензий на основе наноразмерных частиц диоксида кремния сильно зависит от динамической вязкости, которая непосредственно влияет на применение наножидкостей. Целью данной работы являются разработка и валидация моделей для прогнозирования динамической вязкости от независимых входных параметров: концентрации диоксида кремния SiO2, кислотности рН, а также скорости сдвига $\gamma$. Проведен анализ влияния состава суспензии на ее динамическую вязкость. Выявлены статистически однородные по составу группы суспензий, в рамках которых возможна взаимозаменяемость составов. Показано, что при малых скоростях сдвига реологические свойства суспензий существенно отличаются от свойств, полученных на более высоких скоростях. Установлены значимые положительные корреляции динамической вязкости суспензии с концентрацией SiO2 и кислотностью рН, отрицательные — со скоростью сдвига $\gamma$. Построены регрессионные модели с регуляризацией зависимости динамической вязкости $\eta$ от концентраций SiO2, NaOH, H3PO4, ПАВ (поверхностно-активное вещество), ЭДА (этилендиамин), скорости сдвига $\gamma$. Для более точного прогнозирования динамической вязкости были обучены модели с применением алгоритмов нейросетевых технологий и машинного обучения (многослойного перцептрона MLP, сети радиальной базисной функции RBF, метода опорных векторов SVM, метода случайного леса RF). Эффективность построенных моделей оценивалась с использованием различных статистических метрик, включая среднюю абсолютную ошибку аппроксимации (MAE), среднюю квадратическую ошибку (MSE), коэффициент детерминации $R^2$, средний процент абсолютного относительного отклонения (AARD%). Модель RF показала себя как лучшая модель на обучающей и тестовой выборках. Определен вклад каждой компоненты в построенную модель, показано, что наибольшее влияние на динамическую вязкость оказывает концентрация SiO2, далее кислотность рН и скорость сдвига $\gamma$. Точность предлагаемых моделей сравнивается с точностью ранее опубликованных в литературе моделей. Результаты подтверждают, что разработанные модели можно рассматривать как практический инструмент для изучения поведения наножидкостей, в которых используются водные суспензии на основе наноразмерных частиц диоксида кремния.
Ключевые слова: наножидкость, концентрация SiO$_2$, кислотность рН, динамическая вязкость, регрессия, нейронные сети, машинное обучение. -
Двуслойные интервальные взвешенные графы в оценке рыночных рисков
Компьютерные исследования и моделирование, 2014, т. 6, № 1, с. 159-166Просмотров за год: 2. Цитирований: 1 (РИНЦ).Данная работа посвящена применению двуслойных интервальных взвешенных графов в прогнозировании нестационарных временных рядов и оценке по полученным прогнозам рыночных рисков. Первый слой графа с интервальными вершинами, формируемый во время первичного обучения системы, отображает все возможные флуктуации системы в отрезке времени, в котором обучали систему. Интервальные вершины второго слоя графа (надстройка над графом первого слоя), отображающие степень ошибки моделируемых значений временного ряда, соединены ребрами с вершинами графа первого слоя. Предложенная модель апробирована на получении 90-дневного прогноза цен на стальные биллеты. Средняя ошибка прогноза составила 2,6 %, что меньше средней ошибки авторегрессионных прогнозов.
-
Эффективный алгоритм сравнения документов в формате ${\mathrm{\LaTeX}}$
Компьютерные исследования и моделирование, 2015, т. 7, № 2, с. 329-345Рассматривается задача построения различий, возникающих при редактировании документов в формате ${\mathrm{\LaTeX}}$. Каждый документ представляется в виде синтаксического дерева, узлы которого называются токенами. Строится минимально возможное текстовое представление документа, не меняющее синтаксическое дерево. Весь текст разбивается на фрагменты, границы которых соответствуют токенам. С помощью алгоритма Хиршберга строится отображение последовательности текстовых фрагментов изначального документа в аналогичную последовательность отредактированного документа, соответствующее минимальному редактирующему расстоянию. Строится отображение символов текстов, соответствующее отображению последовательностей текстовых фрагментов. В синтаксических деревьях выделяются токены такие, что символы соответствующих фрагментов текста при отображении либо все не меняются, либо все удаляются, либо все добавляются. Для деревьев, образованных остальными токенами, строится отображение с помощью алгоритма Zhang–Shasha.
Ключевые слова: автоматизация, анализ текста, лексема, машинное обучение, метрика, редактирующее расстояние, синтаксическое дерево, токен, ${\mathrm{\LaTeX}}$.Просмотров за год: 2. Цитирований: 2 (РИНЦ). -
Перспективы использования космоснимков для прогнозирования загрязнения воздуха тяжелыми металлами
Компьютерные исследования и моделирование, 2018, т. 10, № 4, с. 535-544Просмотров за год: 21.Контроль за загрязнением воздуха имеет большое значение для стран Европы и Азии. В рамках Конвенции ООН по дальнему трансграничному переносу воздушных загрязнений (СLRTAP) реализуется программа UNECE ICP Vegetation, направленная на определение наиболее неблагополучных областей, создание региональных карт и улучшение понимания природы долгосрочных трансграничных загрязнений. В Объединенном институте ядерных исследований была разработана облачная платформа, предоставляющая участникам программы ICP Vegetation удобные инструменты для сбора, анализа и обработки данных мониторинга. В настоящее время в системе содержится информация о более чем 6000 точках пробоотбора в 40 регионах различных стран Европы и Азии.
Важным этапом контроля является моделирование загрязнений в местах, где частота исследований или плотность покрытия сети сбора образцов недостаточны. Одним из подходов к прогнозированию загрязнений является использование специализированных статистических моделей и методов машинного обучения совместно с различными количественными показателями точек сбора образцов и информацией о концентрациях элементов. Наиболее перспективным источником количественных показателей для обучения моделей являются космические снимки в различных спектрах. Обученная должным образом модель позволит получать прогноз по концентрациям элементов, используя исключительно космоснимки. Специализированная платформа Google Earth Engine предоставляет широкие возможности для анализа и обработки данных от более чем 100 различных проектов дистанционного зондирования земли, удобный интерфейс разработчика на JavaScript и программный интерфейс на Python для использования в сторонних приложениях.
В работе рассматривается возможность использования статистических показателей космоснимков, полученных от платформы Google Earth Engine, совместно с данными мониторинга состояния окружающей среды проекта ICP Vegetation для обучения моделей, способных прогнозировать концентрацию тяжелых металлов в определенных регионах.
Журнал индексируется в Scopus
Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU
Журнал входит в систему Российского индекса научного цитирования.
Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science
Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"