Текущий выпуск Номер 5, 2024 Том 16

Все выпуски

Результаты поиска по 'нелинейная упругость':
Найдено статей: 23
  1. В работе рассмотрено приложение методов кинетической теории к задачам гемодинамики. Для моделирования выбраны решеточные уравнения Больцмана. Данные модели описывают дискретизированную по пространственной и временной координате динамику движения частиц на одномерной решетке. Хорошо известно, что в пределе малых длин свободного пробега решеточные уравнения Больцмана описывают уравнения гидродинамики. Если течение достаточно медленное (мало число Маха), то данные уравнения гидродинамики переходят в уравнения Навье – Стокса для сжимаемого газа. Если в получающихся гидродинамических уравнениях переменные, отвечающие плотности и скорости звука, считать площадью поперечного сечения сосуда и скоростью распространения пульсовой волны давления, то выводятся хорошо известные в биомеханике нелинейные уравнения распространения несжимаемой вязкой жидкости (крови) в эластичном сосуде для частного случая постоянной пульсовой скорости.

    В общем случае скорость распространения пульсовой волны зависит от площади просвета сосуда. Следует отметить интересную аналогию: уравнение состояния решеточного газа в новых переменных становится законом, связывающим давление и площадь поперечного сечения сосуда. Таким образом, в общем случае требуется модифицировать уравнение состояния для решеточного уравнения Больцмана. Данная процедура хорошо известна в теории неидеального газа и многофазных течений и эквивалентна введению в уравнения виртуальной силы. Получающиеся уравнения могут использоваться для моделирования любых законов, связывающих скорость пульсовой волны и площадь просвета сосуда.

    В качестве тестовых задач рассмотрено распространение уединенной нелинейной пульсовой волны в сосуде с упругими свойствами, описываемыми законом Лапласа. Во второй задаче рассмотрено распространение пульсовых волн для бифуркации сосудов. Показано, что результаты расчетов хорошо совпадают с данными из предыдущих исследований.

    Просмотров за год: 2.
  2. Известно, что скорость звука в средах, содержащих сильно сжимаемые включения, например воздушные поры в упругой среде или газовые пузырьки в жидкости, может существенно уменьшиться по сравнению с однородной средой. Эффективный нелинейный параметр такой среды, описывающий проявление нелинейных эффектов, возрастает в сотни и тысячи раз из-за большого различия сжимаемости включений и окружающей среды. Пространственное изменение концентрации таких включений приводит к переменной локальной скорости звука, что, в свою очередь, вызывает пространственно-временное перераспределение акустической энергии в волне и искажению ее временных профилей и поперечной структуры ограниченных пучков. В частности, могут образовываться области фокусировок. При определенных условиях возможно формирование звукового канала, обеспечивающего волноводное распространение акустических сигналов в среде с подобными включениями. Таким образом, возможно управление пространственно-временной структурой акустических волн с помощью введения сильно сжимаемых включений с заданным пространственным распределением и концентрацией. Целью работы является исследование распространения акустических волн в резиноподобном материале с неоднородным пространственным распределением воздушных полостей. Основной задачей является развитие адекватной теории таких структурно-неоднородных сред, теории распространения нелинейных акустических волн и пучков в этих средах, расчет акустических полей и выявление связи параметров среды и включений с характеристиками распространяющихся волн. В работе выведено эволюционное самосогласованное уравнение с интегро-дифференциальным членом, описывающее в низкочастотном приближении распространение интенсивных акустических пучков в среде с сильно сжимаемым полостями. В этом уравнении учтено вторичное акустическое поле, вызванное динамикой колебаний полостей. Развит метод, позволяющий получить точные аналитические решения для поля нелинейного акустического пучка на его оси и правильно рассчитать поле в фокальных областях. Полученные результаты применены для теоретического моделирования материала с неоднородным распределением сильно сжимаемых включений.

    Просмотров за год: 6.
  3. Жмуров А.А., Алексеенко А.Е., Барсегов В.А., Кононова О.Г., Холодов Я.А.
    Фазовый переход от α-спиралей к β-листам в суперспиралях фибриллярных белков
    Компьютерные исследования и моделирование, 2013, т. 5, № 4, с. 705-725

    Изучен переход от α-структур к β-структурам под воздействием внешнего механического поля в молекуле фибрина, содержащей суперспирали, и разрешен ландшафт энергии. Проведено детальное теоретическое моделирование отдельных этапов процесса растяжения суперспирального фрагмента. На графиках зависимости силы (F) от растяжения молекулы (X) для тандема из двух симметричных суперспиралей фибрина (длина каждой ∼17 нм) видны три режима механического поведения: (1) линейный (упругий) режим, в котором суперспирали ведут себя как энтропийная пружина (F<100−125 пН и X<7−8 нм), (2) вязкий (пластичный) режим, в котором сила сопротивления молекулы не меняется с увеличением растяжения (F≈150 пН и X≈10−35 нм) и (3) нелинейный режим зависимости F от X (F>175−200 пН и X>40−50 нм). В линейном режиме суперспирали раскручиваются на угол в 2π радиан, но структурные изменения на уровне вторичной структуры не происходят. Вязкий режим сопровождается фазовым переходом от тройных α-спиралей к параллельным β-листам, в результате которого изменяется вторичная структура. Критическое растяжение α-спиралей составляет 0.25 нм на один виток, а характерное изменение энергии — 4.9 ккал/моль. Также были подсчитаны связанные с фазовым переходом изменения во внутренней энергии Δu, энтропии Δs и механической емкости cf из расчета на один виток α-спирали. Подобное динамическое поведение α-спиралей при растяжении белковых филаментов может являться универсальным механизмом регуляции фибриллярных α-спиральных белков в ответ на внешнее силовое воздействие, возникающее в результате действия биологических сил.

    Просмотров за год: 6. Цитирований: 1 (РИНЦ).
Страницы: « первая предыдущая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.