Текущий выпуск Номер 3, 2024 Том 16

Все выпуски

Результаты поиска по 'направленное движение':
Найдено статей: 46
  1. Ветчанин Е.В., Тененев В.А.
    Моделирование управления движением в вязкой жидкости тела с переменной геометрией масс
    Компьютерные исследования и моделирование, 2011, т. 3, № 4, с. 371-381

    Дана постановка задачи управления движения тела в вязкой жидкости. Движение тела индуцируется перемещением внутренних материальных точек. На основе численного решения уравнений движения тела и гидродинамических уравнений получены аппроксимирующие зависимости для вязких сил. С применением аппроксимаций решается задача оптимального управления движением тела по заданной траектории с применением гибридного генетического алгоритма. Установлена возможность направленного движения тела под действием возвратно-поступательного движения внутренней точки. Оптимальное управление направлением движения осуществляется движением другой внутренней точки по круговой траектории с переменной скоростью.

    Просмотров за год: 2. Цитирований: 16 (РИНЦ).
  2. Зацерковный А.В., Нурминский Е.А.
    Нейросетевой анализ транспортных потоков городских агломераций на основе данных публичных камер видеообзора
    Компьютерные исследования и моделирование, 2021, т. 13, № 2, с. 305-318

    Адекватное моделирование сложной динамики городских транспортных потоков требует сбора больших объемов данных для определения характера соответствующих моделей и их калибровки. Вместе с тем оборудование специализированных постов наблюдения является весьма затратным мероприятием и не всегда технически возможно. Совокупность этих факторов приводит к недостаточному фактографическому обеспечению как систем оперативного управления транспортными потоками, так и специалистов по транспортному планированию с очевидными последствиями для качества принимаемых решений. В качестве способа обеспечить массовый сбор данных хотя бы для качественного анализа ситуаций достаточно давно применяется обзорные видеокамеры, транслирующие изображения в определенные ситуационные центры, где соответствующие операторы осуществляют контроль и управление процессами. Достаточно много таких обзорных камер предоставляют данные своих наблюдений в общий доступ, что делает их ценным ресурсом для транспортных исследований. Вместе с тем получение количественных данных с таких камер сталкивается с существенными проблемами, относящимися к теории и практике обработки видеоизображений, чему и посвящена данная работа. В работе исследуется практическое применение некоторых мейнстримовских нейросетевых технологий для определения основных характеристик реальных транспортных потоков, наблюдаемых камерами общего доступа, классифицируются возникающие при этом проблемы и предлагаются их решения. Для отслеживания объектов дорожного движения применяются варианты сверточных нейронных сетей, исследуются способы их применения для определения базовых характеристик транспортных потоков. Простые варианты нейронной сети используются для автоматизации при получении обучающих примеров для более глубокой нейронной сети YOLOv4. Сеть YOLOv4 использована для оценки характеристик движения (скорость, плотность потока) для различных направлений с записей камер видеонаблюдения.

  3. Мелешко Е.В., Афанасенко Т.С., Гаджимирзаев Ш.М., Пашков Р.А., Гиля-Зетинов А.А., Цыбулько Е.А., Зайцева А.С., Хельвас А.В.
    Дискретное моделирование процесса восстановительного ремонта участка дороги
    Компьютерные исследования и моделирование, 2022, т. 14, № 6, с. 1255-1268

    Работа содержит описание результатов моделирования процесса поддержания готовности участка дорожной сети в условиях воздействия с заданными параметрами. Рассматривается одномерный участок дороги длиной до 40 км с общим количеством ударов до 100 в течение рабочей смены бригады.

    Разработана имитационная модель проведения работ по его поддержанию в рабочем состоянии несколькими группами (инженерными бригадами), входящими в состав инженерно-дорожного подразделения. Для поиска точек появления заграждений используется беспилотный летательный аппарат мультикоптерного типа.

    Разработаны схемы жизненных циклов основных участников тактической сцены и построена событийно управляемая модель тактической сцены. Предложен формат журнала событий, формируемого в результате имитационного моделирования процесса поддержания участка дороги.

    Для визуализации процесса поддержания готовности участка дороги предложено использовать визуализацию в формате циклограммы. Разработан стиль для построения циклограммы на основе журнала событий.

    В качестве алгоритма принятия решения по назначению заграждений бригадам принят простейший алгоритм, предписывающий выбирать ближайшее заграждение.

    Предложен критерий, описывающий эффективность работ по поддержанию участка на основе оценки средней скорости движения транспортов по участку дороги.

    Построены графики зависимости значения критерия и среднеквадратичной ошибки в зависимости от длины поддерживаемого участка и получена оценка для максимальной протяженности дорожного участка, поддерживаемого в состоянии готовности с заданными значениями для выбранного показателя качества при заданных характеристика нанесения ударов и производительности ремонтных бригад. Показана целесообразность проведения работ по поддержанию готовности несколькими бригадами, входящими в состав инженерно-дорожного подразделения, действующими автономно.

    Проанализировано влияние скорости беспилотного летательного аппарата на возможности по поддержанию готовности участка. Рассмотрен диапазон скоростей от 10 до 70 км/ч, что соответствует техническим возможностям разведывательных беспилотных летательных аппаратов мультикоптерного типа.

    Результаты моделирования могут быть использованы в составе комплексной имитационной модели армейской наступательной или оборонительной операции и при решении задачи оптимизации назначения задач по поддержанию готовности участков дорог инженерно-дорожными бригадами. Предложенный подход может представлять интерес при разработке игр-стратегий военной направленности.

  4. Minkov L., Dueck J.
    CFD-modeling of a flow in a hydrocyclone with an additional water injector
    Компьютерные исследования и моделирование, 2011, т. 3, № 1, с. 63-76

    The paper is an example of computer simulation in mechanical engineering. Velocity field in a hydrocyclone are determined numerically, because for direct measurements it is difficult to achieve them. The numerical simulation of 3D fluid dynamics based on the k-eps RNG model of turbulence in the hydrocyclone with the injector, containing 5 tangentially directed nozzles is considered. It is shown that the direction of movement of
    injected fluid in the hydrocyclone depends on the water flow rate through the injector. The calculations show in accordance with the experiments that the dependence of the Split-parameter on the injected water flow rate has a non-monotone character associated with the ratio of power of the main flow and the injected fluid.

    Ключевые слова: hydrocyclone, injection, computational fluid dynamics.
    Просмотров за год: 2. Цитирований: 5 (РИНЦ).
  5. Закирьянов Ф.К., Якушевич Л.В.
    Управление динамикой кинка модифицированного уравнения синус-Гордона внешним воздействием с меняющимися параметрами
    Компьютерные исследования и моделирование, 2013, т. 5, № 5, с. 821-834

    В работе представлены результаты, подтверждающие возможность управления движением кинка модифицированного уравнения синус-Гордона внешним воздействием с изменяющимися параметрами. Рассмотрены три типа внешних воздействий: постоянное, периодическое с постоянной частотой и периодическое частотно-модулированное. С использованием метода Мак-Лафлина–Скотта получены зависимости координаты и скорости кинка от времени при разных значениях параметров внешнего воздействия. Показано, что изменяя параметры, можно регулировать скорость и направление движения кинка.

    Просмотров за год: 2. Цитирований: 4 (РИНЦ).
  6. Литвинов В.Н., Чистяков А.Е., Никитина А.В., Атаян А.М., Кузнецова И.Ю.
    Математическое моделирование гидродинамических процессов Азовского моря на многопроцессорной вычислительной системе
    Компьютерные исследования и моделирование, 2024, т. 16, № 3, с. 647-672

    Статья посвящена моделированию гидродинамических процессов мелководных водоемов на примере Азовского моря. В статье приведена математическая модель гидродинамики мелководного водоема, позволяющая вычислить трехмерные поля вектора скорости движения водной среды. Применение регуляризаторов по Б.Н. Четверушкину в уравнении неразрывности привело к изменению способа расчета поля давления, базирующегося на решении волнового уравнения. Построена дискретная конечно-разностная схема для расчета давления в области, линейные размеры которой по вертикали существенно меньше размеров по горизонтальным координатным направлениям, что является характерным для геометрии мелководных водоемов. Описаны метод и алгоритм решения сеточных уравнений с предобуславливателем трехдиагонального вида. Предложенный метод применен для решения сеточных уравнений, возникающих при расчете давления для трехмерной задачи гидродинамики Азовского моря. Показано, что предложенный метод сходится быстрее модифицированного попеременно-треугольного метода. Представлена параллельная реализация предложенного метода решения сеточных уравнений и проведены теоретические и практические оценки ускорения алгоритма с учетом времени латентности вычислительной системы. Приведены результаты вычислительных экспериментов для решения задач гидродинамики Азовского моря с использованием гибридной технологии MPI + OpenMP. Разработанные модели и алгоритмы применялись для реконструкции произошедшей в 2001 году в Азовском море экологической катастрофы и решения задачи движения водной среды в устьевых районах. Численные эксперименты проводились на гибридном вычислительном кластере К-60 ИПМ им. М.В. Келдыша РАН.

  7. Попов В.С., Попова А.А.
    Моделирование взаимодействия стенки канала с упругозакрепленным торцевым уплотнением
    Компьютерные исследования и моделирование, 2020, т. 12, № 2, с. 387-400

    В работе предложена новая математическая модель для исследования динамики взаимодействия продольной стенки узкого канала с его торцевым уплотнением — торцевой стенкой, имеющей упругое закрепление. В рамках данной модели взаимодействие указанных стенок происходит через слой вязкой жидкости, заполняющей канал, и ранее не исследовалось. Это потребовало постановки и решения задачи гидроупругости. Поставленная задача состоит из уравнений Навье–Стокса, уравнения неразрывности, уравнения динамики торцевой стенки как одномассовой модели и соответствующих краевых условий. На первом этапе задача исследована при ползучем течении. На втором этапе исследования данное ограничение снимается и, при использовании метода итераций, осуществлено обобщение исходной задачи с учетом инерции движения жидкости. Решение сформулированной задачи позволило определить законы распределения скоростей и давления в слое жидкости, а также закон движения торцевой стенки. Показано, что при ползучем течении физические свойства слоя жидкости и геометрические размеры канала полностью определяют демпфирование в рассматриваемой колебательной системе. При этом на демпфирующие свойства слоя жидкости оказывает влияние как скорость движения торцевой стенки, так и скорость движения продольной стенки. Найдены выражения для коэффициентов демпфирования слоя жидкости в продольном и поперечном направлении. При учете сил инерции жидкости выявлено их влияние на колебания торцевой стенки, проявляющиеся в виде двух присоединенных масс в уравнении ее движения. Определены выражения для указанных присоединенных масс. Для режима установившихся гармонических колебаний построены амплитудно-частотные и фазово-частотные характеристики торцевой стенки, учитывающие демпфирующие и инерционные свойства слоя вязкой жидкости в канале. Моделирование показало, что совместный учет инерции движения слоя жидкости в канале и его демпфирующих свойств приводит к сдвигу резонансных частот колебаний в низкочастотную область и возрастанию амплитуд колебаний торцевой стенки.

  8. Аристов В.В., Строганов А.В., Ястребов А.Д.
    Применение модели кинетического типа для изучения пространственного распространения COVID-19
    Компьютерные исследования и моделирование, 2021, т. 13, № 3, с. 611-627

    Предлагается простая модель на основе уравнения кинетического типа для описания распространения вируса в пространстве посредством миграции носителей вируса из выделенного центра. Рассматриваются страны, для которых применима одномерная модель: Россия, Италия, Чили. Одномерный подход возможен из-за географического расположения этих стран и их протяженности в направлениях от центров заражения (Москвы, Ломбардии и Сантьяго соответственно). Определяется изменение плотности зараженных во времени и пространстве. Применяется двухпараметрическая модель. Первый параметр — величина средней скорости распространения, соответствующий переносу инфицированных транспортными средствами. Второй параметр — частота уменьшения количества инфицированных элементов по мере продвижения по территории страны, что связано с прибытием пассажиров в места назначения, а также с карантинными мерами, препятствующими их перемещению по стране. Параметры модели определяются по фактически известным данным. Строится аналитическое решение, для получения серии расчетов применяются также простые численные методы. В модели рассматривается пространственное распространение заболевания, при этом заражения на местах не учитываются. Поэтому вычисленные значения на начальном этапе хорошо соответствуют экспериментальным данным, а затем плотность заболевших начинает быстрее возрастать из-за заражений на местах. Тем не менее модельные расчеты позволяют делать некоторые предсказания. Помимо скорости заражения, возможна аналогичная «скорость выздоровления». По моменту времени достижения охвата большей части населения страны при движении фронта выздоровления делается вывод о начале глобального выздоровления, что соответствует реальным данным.

  9. Гриневич А.А., Якушевич Л.В.
    О компьютерных экспериментах Касмана
    Компьютерные исследования и моделирование, 2019, т. 11, № 3, с. 503-513

    В 2007 году Касман провел серию оригинальных компьютерных экспериментов с кинками уравнения синус-Гордона, движущимися вдоль искусственных последовательностей ДНК. Были рассмотрены две последовательности. Каждая состояла из двух частей, разделенных границей. Левая часть первой из последовательностей содержала повторяющиеся триплеты TTA, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты CGC, кодирующие аргинины. Во второй последовательности левая часть содержала повторяющиеся триплеты CTG, кодирующие лейцины, а правая часть содержала повторяющиеся триплеты AGA, кодирующие аргинины. При моделировании движения кинка в этих последовательностях был обнаружен интересный эффект. Оказалось, что кинк, движущийся в одной из последовательностей, останавливался, не достигнув конца, а затем «отскакивал», как будто ударялся об стенку. В то же время в другой последовательности движение кинка не прекращалось в течение всего времени проведения эксперимента. В этих компьютерных экспериментах, однако, использовалась простая модель ДНК, предложенная Салерно. Она учитывает различия во взаимодействиях комплементарных оснований внутри пар, но пренебрегает различием в моментах инерции азотистых оснований и расстояниях между центрами масс оснований и сахарно-фосфатной цепочкой. Вопрос о том, сохранится ли эффект Касмана при использовании более точных моделей ДНК, до сих пор остается открытым. В настоящей работе мы исследуем эффект Касмана на основе более точной модели ДНК, которая учитывает оба эти различия. Мы получили энергетические профили последовательностей Касмана и построили траектории движения кинков, запущенных в этих последовательностях при разных начальных значениях энергии. Результаты наших исследований подтвердили существование эффекта Касмана, но только в ограниченном интервале начальных значений энергии кинков и при определенном направлении движения кинков. В других случаях этот эффект не наблюдался. Мы обсудили, какие из исследованных последовательностей энергетически были более предпочтительны для возбуждения и распространения кинков.

    Просмотров за год: 23.
  10. Микишанина Е.А., Платонов П.С.
    Управление высокоманевренным мобильным роботом в задаче следования за объектом
    Компьютерные исследования и моделирование, 2023, т. 15, № 5, с. 1301-1321

    Данная статья посвящена разработке алгоритма траекторного управления высокоманевренной транспортной четырехколесной роботехнической платформой, оснащенной mecanum-колесами, с целью организации ее движения за некоторым подвижным объектом. Представлен расчет кинематических соотношений данной платформы в фиксированной системе координат, необходимый для определения угловых скоростей колес робота в зависимости от заданного вектора скорости. Разработан алгоритм движения робота за мобильным объектом на плоскости без препятствий на основе использования модифицированного метода погони с использованием разных видов управляющих функций. Метод погони заключается в том, что вектор скорости геометрического центра платформы сонаправлен с вектором, соединяющим геометрический центр платформы и движущийся объект. Реализовано два вида управляющих функций: кусочная и постоянная. Под кусочной функцией имеется в виду управление с режимами переключения в зависимости от расстояния от робота до цели. Главной особенностью кусочной функции является плавное изменение скорости робота. Также управляющие функции разделяются по характеру поведения при приближении робота к цели. При применении одной из кусочных функций движение робота замедляется при достижении определенного расстояние между роботом и целью и полностью останавливается при критичном расстоянии. Другой вид поведения при приближении к цели заключается в изменении направления вектора скорости на противоположный, если расстояние между платформой и объектом будет минимально допустимым, что позволяет избегать столкновения при движении цели в направления робота. Данный вид поведения при приближении к цели реализован для кусочной и постоянной функции. Выполнено численное моделирование алгоритма управления роботом для различных управляющих функций в задаче преследования цели, где цель движется по окружности. Представлен псевдокод алгоритма управления и управляющих функций. Показаны графики траектории робота при движении за целью, изменения скорости, изменения угловых скоростей колес от времени для различных управляющих функций.

Страницы: « первая предыдущая следующая

Журнал индексируется в Scopus

Полнотекстовая версия журнала доступна также на сайте научной электронной библиотеки eLIBRARY.RU

Журнал включен в базу данных Russian Science Citation Index (RSCI) на платформе Web of Science

Международная Междисциплинарная Конференция "Математика. Компьютер. Образование"

Международная Междисциплинарная Конференция МАТЕМАТИКА. КОМПЬЮТЕР. ОБРАЗОВАНИЕ.